Skip to main content
Log in

Small Ball Estimates for Quasi-Norms

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

This note contains two types of small ball estimates for random vectors in finite-dimensional spaces equipped with a quasi-norm. In the first part, we obtain bounds for the small ball probability of random vectors under some smoothness assumptions on their density function. In the second part, we obtain Littlewood–Offord type estimates for quasi-norms. This generalizes results which were previously obtained in Friedland and Sodin (C R Math Acad Sci Paris 345(9):513–518, 2007), and Rudelson and Vershynin (Commun Pure Appl Math 62(12):1707–1739, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamczak, R., Guédon, O., Latała, R., Litvak, A.E., Oleszkiewicz, C., Pajor, A., Tomczak-Jaegermann, N.: Moment estimates for convex measures. Electron. J. Probab. 17, 1–19 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  3. Friedland, O., Guédon, O.: Random embedding of \(\ell ^n_p\) into \(\ell ^N_r\). Math. Ann. 350(4), 953–972 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Friedland, O., Sodin, S.: Bounds on the concentration function in terms of the Diophantine approximation. C R Math Acad Sci Paris 345(9), 513–518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gluskin, E., Milman, V.: Geometric probability and random cotype 2. In: Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1850, pp. 123–138. Springer, Berlin (2004)

  6. Lai, M.J., Liu, Y.: The probabilistic estimates on the largest and smallest \(q\)-singular values of random matrices. Math. Comput. 84(294), 1775–1794 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Latała, R., Oleszkiewicz, K.: Small ball probability estimates in terms of widths. Studia Math. 169(3), 305–314 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, W.V., Shao, Q.M.: Gaussian processes: inequalities, small ball probabilities and applications. In: Stochastic processes: theory and methods, Handbook of Statist., vol. 19, pp. 533–597. North-Holland, Amsterdam (2001)

  9. Nguyen, H.H., Vu, V.: Small ball probability, inverse theorems, and applications. http://arxiv.org/abs/1301.0019 (2013)

  10. Nguyen, H.H.: Inverse Littlewood–Offord problems and the singularity of random symmetric matrices. Duke Math. J. 161(4), 545–586 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Paouris, G.: Small ball probability estimates for log-concave measures. Trans. Am. Math. Soc. 364(1), 287–308 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Paouris, G., Pivovarov, P.: Small-ball probabilities for the volume of random convex sets. Discrete Comput. Geom. 49(3), 601–646 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rudelson, M., Vershynin, R.: The Littlewood–Offord problem and invertibility of random matrices. Adv. Math. 218(2), 600–633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rudelson, M., Vershynin, R.: Smallest singular value of a random rectangular matrix. Commun. Pure Appl. Math. 62(12), 1707–1739 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tao, T., Vu, V.H.: From the Littlewood–Offord problem to the circular law: universality of the spectral distribution of random matrices. Bull. Amer. Math. Soc. (N.S.) 46(3), 377–396 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tao, T., Vu, V.H.: Inverse Littlewood–Offord theorems and the condition number of random discrete matrices. Ann. Math. 169(2), 595–632 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tao, T., Vu, V.H.: The Littlewood–Offord problem in high dimensions and a conjecture of Frankl and Füredi. Combinatorica 32(3), 363–372 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ohad Giladi.

Additional information

Part of this work was done while the second named author was visiting the University of Alberta as a PIMS postdoctoral fellow. The authors would also like to thank the referees for their valuable comments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedland, O., Giladi, O. & Guédon, O. Small Ball Estimates for Quasi-Norms. J Theor Probab 29, 1624–1643 (2016). https://doi.org/10.1007/s10959-015-0622-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-015-0622-z

Keywords

Mathematics Subject Classification (2010)

Navigation