Skip to main content
Log in

GAUSSIAN-RBF INTERPOLANT AND THIRD-ORDER COMPACT DISCRETIZATION OF 2D ANOMALOUS DIFFUSION-CONVECTION MODEL ON A MESH-MAPPED NON-UNIFORM GRID NETWORK

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We describe a compact finite-difference discretization and Gaussian-radial basis function for the two-dimensional local fractional elliptic PDEs that describe anomalous diffusion-convection of groundwater contamination. Precisely estimating pollutant concentration over a long period helps protect water reservoirs. The local fractional partial differential equations and their discretization described here are the generalization of the integer order elliptic partial differential equations and their high-order scheme. The high-order discretization of fractal gradient and anomalous diffusion on a non-uniformly spaced nine-point single-cell grid network gives the result in small computing time. The new scheme is supported by a detailed convergence analysis describing the monotone property and a strongly connected Jacobian (iteration) matrix graph. The computational illustration of various anomalous diffusion-convection models demonstrates the proposed methodology’s effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. A. Chang, H. Sun, C. Zheng, B. Lu, C. Lu, R. Ma and Y. Zhang, A time fractional convectiondiffusion equation to model gas transport through heterogeneous soil and gas reservoirs, Physica. A. Stat. Mech. Appl., 502, 356-369 (2018).

    Article  Google Scholar 

  2. F. Cao, D. Yuan and Y. Ge, The adaptive mesh method based on HOC difference scheme for convection diffusion equations with boundary layers, Comput. Appl. Math., 37(2), 15811600 (2018).

    Article  MathSciNet  Google Scholar 

  3. A. Ercan, Self-similarity in fate and transport of contaminants in groundwater, Sci. Total Environ., 706, 135738 (2020).

    Article  Google Scholar 

  4. L. Li, Z. Jiang and Z. Yin, Compact finite-difference method for 2D time-fractional convection-diffusion equation of groundwater pollution problems, Comp. Appl. Math., 39, 142(2020).

  5. O.N. Goncharova and V.B. Bekezhanova, Comparative characteristics of evaporative convection regimes in different statements of boundary value problem for convection equations, J. Math. Sci., 267, 444-456 (2022).

    Article  MathSciNet  Google Scholar 

  6. G. Wu , F. Wang and L. Qiu, Physics-informed neural network for solving Hausdorff derivative Poisson equations, Fractals, 31(6) 2340103, 1-15 (2023).

  7. F. Wang, W. Cai, B. Zheng and C. Wang, Derivation and numerical validation of the fundamental solutions for constant and variable-order structural derivative advectiondispersion models, Z. Angew. Math. Phys., 71(135), 1-18 (2020).

    MathSciNet  Google Scholar 

  8. W. Cai and F. Wang, Numerical investigation of three-dimensional Hausdorff derivative anomalous diffusion model, Fractals, 28(2) 2050020, 1-11 (2020).

  9. A.I. Zadorin, Two-dimensional interpolation of functions by cubic splines in the presence of boundary layers, J. Math. Sci., 267, 511-518 (2022).

    Article  MathSciNet  Google Scholar 

  10. E. J. Kansa, Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics, Comput. Math. Appl., 19, 127-47 (1990).

    Article  MathSciNet  Google Scholar 

  11. O. Davydov and D. T. Oanh, Adaptive meshless centres and RBF stencils for Poisson equation, J. Comput. Phy., 230, 287-304 (2011).

    Article  MathSciNet  Google Scholar 

  12. M. Dehghan and N. Shafieeabyaneh, Local radial basis function-finite-difference method to simulate some models in the nonlinear wave phenomena: regularized long-wave and extended Fisher-Kolmogorov equations, Eng. Comput., 37, 1159-1179 (2021).

    Article  Google Scholar 

  13. R. Feng and J. Duan, High accurate finite differences based on RBF interpolation and its application in solving differential equations, J. Sci. Comput. 76, 1785-812 (2018).

    Article  MathSciNet  Google Scholar 

  14. G. B. Wright, B. Fornberg, Scattered node compact finite difference-type formulas generated from radial basis functions, J. Comput. Phys. 212, 99-123 (2006).

    Article  MathSciNet  Google Scholar 

  15. V. Bayona, M. Moscoso, M. Carretero and M. Kindelan, RBF-FD formulas and convergence properties, J. Comput. Phys., 229, 8281-8295 (2010).

    Article  Google Scholar 

  16. N. Jha and S. Verma, A high-resolution convergent radial basis functions compact-FDD for boundary layer problems on a scattered mesh network appearing in viscous elastic fluid, Int. J. Appl. Comput. Math, 8(244), (2022).

  17. N. Jha and S. Verma, Infinitely smooth multiquadric RBFs combined high-resolution compact discretization for non-linear 2D elliptic PDEs on a scattered grid network, Comput. Methods Differ. Equ., 1-23 (2023).

  18. C. M. T. Tien, N. Mai-Duy, C. D. Tran and T. T. Cong, A numerical study of compact approximations based on flat integrated radial basis functions for second-order differential equations, Comput. Math. Appl. 72, 2364-87 (2016).

    Article  MathSciNet  Google Scholar 

  19. J. J. H. Miller, E. O’Riordan and G. I. Shishkin, Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions, World Scientific (Singapore), (2012).

  20. J. H. Ferziger and M. Peric, Computational methods for fluid dynamics, Springer-Verlag, (Berlin), (2002).

  21. F. Wang, W. Chen, C. Zhang and Q. Hua, Kansa method based on the Hausdorff fractal distance for Hausdorff derivative Poisson equations, Fractals, 26(4), 1-15 (2018).

    Article  MathSciNet  Google Scholar 

  22. N. Z. Sun, Mathematical Modeling of Groundwater Pollution, Springer (New York), (2014).

  23. H. Liu, B. Xing, Z. Wang and L. Li, Legendre neural network method for several classes of singularly perturbed differential equations based on mapping and piecewise optimization technology, Neural Process. Lett. 51, 2891-913 (2020).

    Article  Google Scholar 

  24. D. Britz, Digital simulation in electrochemistry, Springer (Berlin), (2005).

  25. N. Jha, N. Kumar and K. K. Sharma, A third (four) order accurate, nine-point compact scheme for mildly-nonlinear elliptic equations in two space variables, Differ. Equ. Dyn. Syst., 25(2), 223-37 (2017).

    Article  MathSciNet  Google Scholar 

  26. J. He, A tutorial review on fractal spacetime and fractional calculus, Int. J. Theor. Phys., 53, 3698-3718 (2014).

    Article  MathSciNet  Google Scholar 

  27. J. He, Fractal calculus and its geometrical explanation, Results Phys., 10, 272-276 (2018).

    Article  Google Scholar 

  28. W. Chen, Time-space fabric underlying anomalous diffusion, Chaos Soliton. Fract., 28, 923-929 (2006).

    Article  Google Scholar 

  29. N. Jha, Numerical treatment of fractal boundary value problems for heat conduction in polar bear with spatial variation of thermal conductivity, Examples Counterexamples., 2, 1-4 (2022).

    Article  MathSciNet  Google Scholar 

  30. C. He, Y. Shen, F. Ji and J. He, Taylor series solution for fractal Bratu-type equation arising in electrospinning process, Fractals, 28(1), 2050011 (2020).

    Article  Google Scholar 

  31. B. Fornberg, E. Lehto and C. Powell, Stable calculation of Gaussian-based RBF-FD stencils, Comput. Math. Appl., 65(4), 627-637 (2013).

    Article  MathSciNet  Google Scholar 

  32. N. Jha and S. Verma, Method of approximations for the convection-dominated anomalous diffusion equation in a rectangular plate using high-resolution compact discretization, MethodsX, 9, 1-23 (2022).

    Article  Google Scholar 

  33. R. S. Varga, Matrix Iterative Analysis, Springer (Berlin), (2000).

  34. P. Henrici, Discrete variable methods in ordinary differential equations, John Wiley & Sons, (New York), (1962).

  35. Y. Saad, Iterative methods for sparse linear systems, SIAM Pub. (Philadelphia), (2003).

  36. L.A. Hageman and D.M. Young, Applied iterative methods. Courier Corporation, 2012.

  37. A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M. M. Meerschaert, M. Ainsworth and G. E. Karniadakis, What is the fractional Laplacian? A comparative review with new results, J. Comput. Phys., 404, 1-62 (2020).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research work was presented at the XIII Annual International Conference of the Georgian Mathematical Union at Batumi Shota Rustaveli State University, 4–9 September 2023.

Funding

N. Jha is partially supported by the Science & Engineering Research Board, Government of India (MTR/2022/000485). S. Verma acknowledges South Asian University, New Delhi for providing travel grant and Council of Scientific & Industrial Research Grant-in-aid (No. 09/1112(0009)/2020-EMR-I) in the form of research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Verma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Expression of weight coefficients in equation (5.2) and (5.3)

 

\(a_{l}^{(0)}\)

\(\left( p_{l}-1\right) \left\{ 2 c^{2} h_{l} / 3+h_{l+1}^{-1}\right\}\)

\(b_{m}^{(0)}\)

\(\left( q_{m}-1\right) \left\{ 2 c^{2} k_{m} / 3+k_{m+1}^{-1}\right\}\)

\(a_{l+1}^{(0)}\)

\(\left\{ c^{2} h_{l}\left( p_{l}+2\right) / 3+h_{l+1}^{-1}\right\} /\left( p_{l}+1\right)\)

\(b_{m+1}^{(0)}\)

\(\left\{ c^{2} k_{m}\left( q_{m}+2\right) / 3+h_{l+1}^{-1}\right\} /\left( 1+q_{m}\right)\)

\(a_{l-1}^{(0)}\)

\(-p_{l}\left\{ c^{2} h_{l}\left( 2 p_{l}+1\right) / 3+h_{l}^{-1}\right\} /\left( p_{l}+1\right)\)

\(b_{m-1}^{(0)}\)

\(-q_{m}\left\{ c^{2} k_{m}\left( 2 q_{m}+1\right) / 3-k_{m}^{-1}\right\} /\left( q_{m}+1\right)\)

\(a_{l}^{(1)}\)

\(\left( p_{l}+1\right) \left\{ c^{2} h_{l}\left( p_{l}+2\right) / 3-h_{l+1}^{-1}\right\}\)

\(b_{m}^{(1)}\)

\(\left( q_{m}+1\right) \left\{ c^{2} k_{m}\left( q_{m}+2\right) / 3-k_{m+1}^{-1}\right\}\)

\(a_{l+1}^{(1)}\)

\(\left( 2 p_{l}+1\right) \left[ 1 /\left\{ h_{l+1}\left( p_{l}+1\right) \right\} -2 c^{2} h_{l} / 3\right]\)

\(b_{m+1}^{(1)}\)

\(\left( 2 q_{m}+1\right) \left[ 1 /\left\{ k_{m+1}\left( 1+q_{m}\right) \right\} -2 c^{2} k_{m} / 3\right]\)

\(a_{l-1}^{(1)}\)

\(p_{l}\left[ 1 /\left\{ h_{l}\left( 1+p_{l}\right) \right\} +c^{2} h_{l}\left( 1-p_{l}\right) / 3\right]\)

\(b_{m-1}^{(1)}\)

\(q_{m}\left[ 1 /\left\{ k_{m}\left( 1+q_{m}\right) \right\} +c^{2} k_{m}\left( 1-q_{m}\right) / 3\right]\)

\(a_{l}^{(2)}\)

\(\left( p_{l}+1\right) \left\{ 1 / h_{l}-c^{2} h_{l}\left( 2 p_{l}+1\right) / 3\right\} / p_{l}\)

\(b_{m}^{(2)}\)

\(\left( q_{m}+1\right) \left\{ 1 / k_{m}-c^{2} k_{m}\left( 2 q_{m}+1\right) / 3\right\} / q_{m}\)

\(a_{l+1}^{(2)}\)

\(-\left[ 1 /\left\{ h_{l}\left( p_{l}+1\right) \right\} +c^{2} h_{l}\left( p_{l}-1\right) / 3\right] / p_{l}\)

\(b_{m+1}^{(2)}\)

\(-\left[ 1 /\left\{ k_{m}\left( q_{m}+1\right) \right\} +c^{2} k_{m}\left( q_{m}-1\right) / 3\right] / q_{m}\)

\(a_{l-1}^{(2)}\)

\(\left( p_{l}+2\right) \left[ 2 c^{2} h_{l} / 3-1 /\left\{ h_{l}\left( p_{l}+1\right) \right\} \right]\)

\(b_{m-1}^{(2)}\)

\(\left( q_{m}+2\right) \left[ 2 c^{2} k_{m} / 3-1 /\left\{ k_{m}\left( q_{m}+1\right) \right\} \right]\)

\(a_{l}^{(3)}\)

\(2\left( 2 p_{l}^{2}-7 p_{l}+2\right) c^{2} /\left( 3 p_{l}\right) -2 /\left( p_{l} h_{l}^{2}\right)\)

\(b_{m}^{(3)}\)

\(2\left( 2 q_{m}^{2}-7 q_{m}+2\right) c^{2} /\left( 3 q_{m}\right) -2 /\left( q_{m} k_{m}^{2}\right)\)

\(a_{l+1}^{(3)}\)

\(2\left\{ \left( p_{l}^{2}+4 p_{l}-2\right) c^{2} / 3+h_{l}^{-2}\right\} /\left\{ p_{l}\left( p_{l}+1\right) \right\}\)

\(b_{m+1}^{(3)}\)

\(2\left\{ \left( q_{m}^{2}+4 q_{m}-2\right) c^{2} / 3+k_{m}^{-2}\right\} /\left\{ q_{m}\left( q_{m}+1\right) \right\}\)

\(a_{l-1}^{(3)}\)

\(2\left\{ -\left( 2 p_{l}^{2}-4 p_{l}-1\right) c^{2} / 3+h_{l}^{-2}\right\} /\left( p_{l}+1\right)\)

\(b_{m-1}^{(3)}\)

\(2\left\{ -\left( 2 q_{m}^{2}-4 q_{m}-1\right) c^{2} / 3+k_{m}^{-2}\right\} /\left( q_{m}+1\right)\)

Appendix 2. Expression of weight coefficients in equation (6.5) and (6.6)

 

\(\rho _{0}\)

\(\left( \rho _{2}-\rho _{1} p_{l}\right) /\left[ \left( p_{l}+1\right) P_{l, m}^{x}\right]\)

\(\sigma _{0}\)

\(\left( \sigma _{2}-\sigma _{1} q_{m}\right) /\left[ \left( q_{m}+1\right) Q_{l, m}^{y}\right]\)

\(\rho _{1}\)

\(-\frac{\rho _{2} t_{1}-\left( t_{0} \rho _{2}+3 c^{2} p^{+} h_{l} p_{l} q_{m}\right) P_{l, m} Q_{l, m}}{t_{1}-t_{0} P_{l, m} Q_{l, m}}\)

\(\sigma _{1}\)

\(-\frac{\sigma _{2} t_{1}-\left( t_{0} \sigma _{2}+3 c^{2} q^{+} k_{l} p_{l} q_{m}\right) P_{l, m} Q_{l, m}}{t_{1}-t_{0} P_{l, m} Q_{l, m}}\)

\(\rho _{2}\)

\(\frac{p_{l} q_{m}\left\{ t_{0}\left( 6 c^{2} h_{l} p_{l} P_{l, m}+P_{l, m}^{x}\right) P_{l, m} Q_{l, m}-t_{1} P_{l, m}^{x}\right\} p^{+}}{2 t_{0}\left( t_{1}-t_{0} P_{l, m} Q_{l, m}\right) \left( p_{l}+1\right) P_{l, m}}\)

\(\sigma _{2}\)

\(\frac{p_{l} q_{m}\left\{ t_{0}\left( 6 c^{2} k_{m} q_{m} Q_{l, m}+Q_{l, m}^{y}\right) P_{l, m} Q_{l, m}-t_{1} Q_{l, m}^{y}\right\} q^{+}}{2 t_{0}\left( t_{1}-t_{0} P_{l, m} Q_{l, m}\right) \left( q_{m}+1\right) Q_{l, m}}\)

\(\rho _{3}\)

\(\rho _{0} h_{l}\left( p_{l}+1\right) Q_{l, m}^{x} /\left[ k_{m}\left( q_{m}+1\right) \right]\)

\(\sigma _{3}\)

\(\sigma _{0} k_{m}\left( q_{m}+1\right) P_{l, m}^{y} /\left[ h_{l}\left( p_{l}+1\right) \right]\)

\(\rho _{4}\)

\(\frac{t_{2} h_{l} p_{l} q_{m} P_{l, m} Q_{l, m}}{2 t_{0}\left( t_{1}-t_{0} P_{l, m} Q_{l, m}\right) k_{m}\left( p_{l}+1\right) P_{l, m}}\)

\(\sigma _{4}\)

\(\frac{t_{2} k_{m} p_{l} q_{m}\left( P_{l, m}\right) ^{2}}{2 t_{0}\left( t_{1}-t_{0} P_{l, m} Q_{l, m}\right) h_{l}\left( q_{m}+1\right) P_{l, m}}\)

\(t_{0}\)

\(2 p_{l}^{2} q_{m}^{2}-p_{l}^{2} q_{m}-p_{l} q_{m}^{2}+2 p_{l}^{2}+8 p_{l} q_{m}+2 q_{m}^{2}-p_{l}-q_{m}+2\)

\(t_{1}\)

\(h_{l} q_{m}\left( p_{l}-1\right) p^{+} Q_{l, m} P_{l, m}^{x}+k_{m} p_{l}\left( q_{m}-1\right) q^{+} P_{l, m} Q_{l, m}^{y}\)

\(t_{2}\)

\(h_{l} q_{m}\left( p_{l}-1\right) p^{+2} Q_{l, m} P_{l, m}^{x}+\left( t_{0} h_{l} p^{+} Q_{l, m}^{x}+k_{m} p_{l}\left( q_{m}-1\right) p^{+} q^{+} Q_{l, m}^{y}-t_{0} p^{+} Q_{l, m}\right.\)

Appendix 3. Values of coefficients in equation (6.8)

 

\(Z_{10}\)

\(h_{l}\left\{ a_{l+1}^{(0)}\left( k_{m} b_{m}^{(0)} t_{11}+t_{10}\right) +h_{l} a_{l+1}^{(3)} t_{20}\right\}\)

\(Z_{21}\)

\(a_{l-1}^{(0)} b_{m+1}^{(0)}\)

\(Z_{20}\)

\(h_{l}\left\{ a_{l-1}^{(0)}\left( k_{m} b_{m}^{(0)} t_{11}+t_{10}\right) +h_{l} a_{l-1}^{(3)} t_{20}\right\}\)

\(Z_{22}\)

\(a_{l-1}^{(0)} b_{m-1}^{(0)}\)

\(Z_{01}\)

\(k_{m}\left\{ b_{m+1}^{(0)}\left( h_{l} a_{l}^{(0)} t_{11}+t_{01}\right) +k_{m} b_{m+1}^{(3)} t_{02}\right\}\)

\(Z_{11}\)

\(a_{l+1}^{(0)} b_{m+1}^{(0)}\)

\(Z_{02}\)

\(k_{m}\left\{ b_{m-1}^{(0)}\left( h_{l} a_{l}^{(0)} t_{11}+t_{01}\right) +k_{m} b_{m-1}^{(3)} t_{02}\right\}\)

\(Z_{12}\)

\(a_{l+1}^{(0)} b_{m-1}^{(0)}\)

\(Z_{00}\)

\(1+h_{l} a_{l}^{(0)} t_{10}+k_{m} b_{m}^{(0)} t_{01}+h_{l} k_{m} a_{l}^{(0)} b_{m}^{(0)} t_{11}+h_{l}^{2} a_{l}^{(3)} t_{20}+k_{m}^{2} b_{m}^{(3)} t_{02}\)

\(t_{10}\)

\(\left( p_{l}-1\right) / 3-h_{l} P_{l, m}^{x}\left( p_{l}^{2}+p_{l}+1\right) /\left( 18 P_{l, m}\right)\)

\(t_{01}\)

\(\left( q_{m}-1\right) / 3-k_{m} Q_{l, m}^{y}\left( q_{m}^{2}+q_{m}+1\right) /\left( 18 Q_{l, m}\right)\)

\(t_{11}\)

\(\left( q_{m}-1\right) \left( p_{l}-1\right) / 9\)

\(t_{20}\)

\(\left( p_{l}^{2}-p_{l}+1\right) / 12\)

\(t_{02}\)

\(\left( q_{m}^{2}-q_{m}+1\right) / 12\)

\(\mathcal {C}_{10}\)

\(\left( p_{l}-1\right) \left\{ 3 P_{l, m}+k_{m}\left( q_{m}-1\right) P_{l, m}^{y}+h_{l}\left( p_{l}-1\right) P_{l, m}^{x}\right\}\)

\(\mathcal {C}_{01}\)

\(\left( q_{l}-1\right) \left\{ 3 Q_{l, m}+k_{m}\left( q_{m}-1\right) Q_{l, m}^{y}+h_{l}\left( p_{l}-1\right) Q_{l, m}^{x}\right\}\)

\(\mathcal {C}_{11}\)

\(\left( p_{l}-1\right) \left( q_{l}-1\right) \left( P_{l, m}+Q_{l, m}\right)\)

\(\mathcal {C}_{12}\)

\(p^{+} h_{l} P_{l, m}^{x} Q_{l, m}-\left[ 2\left( p_{l}-1\right) \left\{ 3 Q_{l, m}-\left( 1-q_{m}\right) k_{m} Q_{l, m}^{y}\right\} +3 p^{-} h_{l} Q_{l, m}^{x}\right] P_{l, m}\)

\(\mathcal {C}_{21}\)

\(q^{+} k_{m} P_{l, m} Q_{l, m}^{y}-\left[ 2\left( q_{m}-1\right) \left\{ 3 P_{l, m}-\left( 1-p_{l}\right) h_{l} P_{l, m}^{x}\right\} +3 q^{-} k_{m} P_{l, m}^{y}\right] Q_{l, m}\)

\(\mathcal {C}_{22}\)

\(q^{-} h_{l}^{2} P_{l, m}+p^{-} k_{m}^{2} Q_{l, m}\)

\(\mathcal {C}_{20}\)

\(12\left( c^{2} h_{l}^{2} p^{+}-3\right) P_{l, m}^{2} Q_{l, m}+2 p^{+} h_{l}^{2}\left( P_{l, m}^{x}\right) ^{2} Q_{l, m}- \Bigg [4 h_{l} k_{m}\left( p_{l}-1\right) \left( q_{l}-1\right) P_{l, m}^{x y} Q_{l, m}+3\Bigg \{4 k_{m}\left( q_{m}- 1\right) P_{l, m}^{y}+4 h_{l}\left( p_{l}-1\right) P_{l, m}^{x}+q^{-} k_{m}^{2} P_{l, m}^{y y}+p^{-} h_{l}^{2} P_{l, m}^{x x}\Bigg \} Q_{l, m}-2 q^{+} k_{m}^{2} P_{l, m}^{y} Q_{l, m}^{y}\Bigg ] P_{l, m}\)

\(\mathcal {C}_{02}\)

\(12\left( c^{2} k_{m}^{2} q^{+}-3\right) P_{l, m} Q_{l, m}^{2}+2 q^{+} k_{m}^{2} P_{l, m}\left( Q_{l, m}^{y}\right) ^{2}-\Bigg [4 h_{l} k_{m}\left( p_{l}-1\right) \left( q_{l}-1\right) P_{l, m} Q_{l, m}^{x y}+3\Bigg \{4 k_{m}\left( q_{l}- 1\right) Q_{l, m}^{y}+4 h_{l}\left( p_{l}-1\right) Q_{l, m}^{x}+q^{-} k_{m}^{2} Q_{l, m}^{y y}+p^{-} h_{l}^{2} Q_{l, m}^{x x}\Bigg \} P_{l, m}-2 p^{+} h_{l}^{2} P_{l, m}^{x} Q_{l, m}^{x}\Bigg ] Q_{l, m}\)

Fig. 1
figure 1

Solution profile for the fractal parameter \(\alpha = 0.6,\ 0.8,\ 1.0\)

Fig. 2
figure 2

Solution profile for the fractal parameter \(\alpha = 0.4,\ 0.7,\ 1.0\)

Fig. 3
figure 3

Solution profile for the fractal parameter \(\alpha = 0.4,\ 0.8,\ 1.0\)

Fig. 4
figure 4

Solution profile for the fractal parameter \(\alpha = 0.2,\ 0.8,\ 1.0\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, N., Verma, S. GAUSSIAN-RBF INTERPOLANT AND THIRD-ORDER COMPACT DISCRETIZATION OF 2D ANOMALOUS DIFFUSION-CONVECTION MODEL ON A MESH-MAPPED NON-UNIFORM GRID NETWORK. J Math Sci (2024). https://doi.org/10.1007/s10958-024-07014-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10958-024-07014-2

Keywords

Navigation