Skip to main content
Log in

Analytic and geometric quasiinvariants of convex curvelinear polygons with infinite number of vertices

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Establishing and evaluation of values of the basic curvelinear quasiinvariants of Jordan curves still remains an important problem of geometric and quasiconformal analysis, especially for applications. It is not solved completely even for polygonal domains. The most general known results were established for unbounded polygons with locally smooth boundaries containing the infinite point and having only a finite number of vertices.

The present paper deals with convex polygonal domains having infinite (countable) number of vertices. It creates a new approach in this direction and establishes that quasiinvariants of such polygons are estimated by their geometric characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abate and G. Patrizio, “Isometries of the Teichmüller metric,” Ann. Scuola Super. Pisa Cl. Sci., 26(4), 437–452 (1988).

    Google Scholar 

  2. L. Ahlfors, “An extension of Schwarz’s lemma,” Trans. Amer. Math. Soc., 43, 359–364 (1938).

    MathSciNet  Google Scholar 

  3. L. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, 1966.

    Google Scholar 

  4. S. Dineen, The Schwarz Lemma. Clarendon Press, Oxford, 1989.

    Google Scholar 

  5. C.J. Earle and J.J. Eells, “On the differential geometry of Teichmüller spaces,” J. Analyse Math., 19, 35–52 (1967).

    Article  MathSciNet  Google Scholar 

  6. C.J. Earle, I. Kra, and S.L. Krushkal, “Holomorphic motions and Teichmüller spaces,” Trans. Amer. Math. Soc., 944, 927–948 (1994).

    Google Scholar 

  7. C.J. Earle and S. Mitra, “Variation of moduli under holomorphic motions. In the tradition of Ahlfors and Bers” (Stony Brook, NY, 1998), Contemp. Math., 256, Amer. Math. Soc., Providence, RI, pp. 39–67 (2000).

  8. F.D. Gakhov, Boundary Value Problems. Pergamon Press, Oxford, 2014.

    Google Scholar 

  9. F.P. Gardiner and N. Lakic, Quasiconformal Teichm¨uller Theory. Amer. Math. Soc., Providence, RI, 2000.

  10. G.M. Goluzin, Geometric Theory of Functions of Complex Variables. Transl. of Math. Monographs, vol. 26, Amer. Math. Soc., Providence, RI, 1969.

  11. H. Grunsky, “ Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen,” emphMath. Z., 45, 29–61 (1939).

  12. M. Heins, “A class of conformal metrics,” Nagoya Math. J., 21, 1–60 (1962).

    Article  MathSciNet  Google Scholar 

  13. W. Von Koppenfels and F. Stallman, Praxis der Konformen Abbildung. Die Grundlagen der Mathematischen Wisenschaften, Bd. 100, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959.

  14. S.L. Krushkal, Quasiconformal Mappings and Riemann Surfaces. Wiley, New York, 1979.

    Google Scholar 

  15. S.L. Krushkal, “Grunsky coefficient inequalities, Carathéodory metric and extremal quasiconformal mappings,” Comment. Math. Helv., 64, 650–660 (1989).

    Article  MathSciNet  Google Scholar 

  16. S.L. Krushkal, “Plurisubharmonic features of the Teichmüller metric. Publications de l’Institut Mathématique-Beograd, Nouvelle série, 75(89), 119–138 (2004).

    Google Scholar 

  17. S.L. Krushkal, “Quasireflections, Fredholm eigenvalues and Finsler metrics,” Doklady Mathematics, 69, 221–224 (2004).

    Google Scholar 

  18. S.L. Krushkal, Quasiconformal extensions and reflections, Ch. 11. In: Handbook of Complex Analysis: Geometric Function Theory, Vol. II (R. K¨uhnau, ed.), Elsevier Science, Amsterdam, pp. 507–553 (2005

  19. S.L. Krushkal, “Strengthened Grunsky and Milin inequalities,” Contemp. Mathematics, 667, 159–179 (2016).

    Article  MathSciNet  Google Scholar 

  20. S.L. Krushkal, “Fredholm eigenvalues and quasiconformal geometry of polygons,” J. Math. Sci., 252(4), 472–501 (2021).

    Article  MathSciNet  Google Scholar 

  21. R. Kühnau, “Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikonforme Abbildungen,” Math. Nachr., 48, 77–105 (1971).

    Article  MathSciNet  Google Scholar 

  22. R. Kühnau, “Quasikonforme Fortsetzbarkeit, Fredholmsche Eigenwerte und Grunskysche Koeffizientenbedingungen,” Ann. Acad. Sci. Fenn. Ser. AI. Math., 7, 383–391 (1982).

    MathSciNet  Google Scholar 

  23. R. Kühnau, “Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend für Q-quasikonforme Fortsetzbarkeit?”, Comment. Math. Helv., 61, 290–307 (1986).

    Article  MathSciNet  Google Scholar 

  24. O. Lehto, Univalent Functions and Teichmüller Spaces. Springer-Verlag, New York, 1987.

    Book  Google Scholar 

  25. I.M. Milin, Univalent Functions and Orthonormal Systems. Transl. of Mathematical Monographs, vol. 49, Transl. of Odnolistnye funktcii i normirovannie systemy, Amer. Math. Soc., Providence, RI, 1977.

  26. D. Minda, “The strong form of Ahlfors’ lemma,” Rocky Mountain J. Math., 17, 457–461 (1987).

    Article  MathSciNet  Google Scholar 

  27. Chr. Pommerenke, Univalent Functions. Vandenhoeck & Ruprecht, G¨ottingen, 1975.

  28. M. Schiffer, “Fredholm eigenvalues and Grunsky matrices,” Ann. Polon. Math., 39, 149–164 (1981).

    Article  MathSciNet  Google Scholar 

  29. K. Strebel, “On the existence of extremal Teichmueller mappings,” J. Analyse Math., 30, 464–480 (1976).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel L. Krushkal.

Additional information

Translated from Ukrains'kiĭ Matematychnyĭ Visnyk, Vol. 20, No. 4, pp. 557–576, October–Desember, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krushkal, S.L. Analytic and geometric quasiinvariants of convex curvelinear polygons with infinite number of vertices. J Math Sci 279, 77–91 (2024). https://doi.org/10.1007/s10958-024-06988-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-024-06988-3

Keywords

Navigation