Skip to main content
Log in

Methodology of Investigations of the Thermal Stressed State of Bodies with Thin Multilayer Coatings

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We present a methodology for the efficient determination and investigation of the thermal stressed state of bodies with thin multilayer coatings based on the procedure of modeling of these coatings by shells with the corresponding geometric, thermal, and thermomechanical properties of the coating. In this approach, the influence of coatings on the thermal stressed state of the whole body–coating system is described by special generalized boundary conditions. The efficiency of this approach is demonstrated by analyzing test problems. We also present examples of new solved nonclassical linear and nonlinear boundary-value problems of thermoelasticity for bodies with multilayer thin coatings subjected to thermal loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Attetkov and N. S. Belyakov, “The temperature field of an infinite solid containing a cylindrical channel with a thermally thin surface coating,” Teplofiz. Vysok. Temp., 44, No. 1, 136–140 (2006); English translation: High Temp., 44, No. 1, 139–143 (2006); https://doi.org/10.1007/s10740-006-0016-0.

  2. R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems, Elsevier, New York (1965).

    MATH  Google Scholar 

  3. Yu. N. Belyaev, “Methods for the numerical analysis of the transfer matrices of elastic strains,” Vestn. Permsk. Nats. Issled. Politekh. Univ. Ser. Mekhanika, No. 3, 63–109 (2013).

  4. A. A. Berezovskii and R. A. Shuvar, “Two-dimensional nonstationary temperature field of a circular cylinder with thermally thin coating,” in: Problems of Nonstationary Heat Conduction [in Russian], Institute of Mathematics, Academy of Sciences of the Ukrainian SSR, Kiev (1984), pp. 97–104.

  5. A. T. Vasilenko, “Main relations in some versions of refined models of shells,” in: A. N. Guz (editor), Mechanics of Composites, Vol. 8: Ya. M. Grigorenko, A. T. Vasilenko, I. G. Emel’yanov, N. N. Kryukov, N. D. Pankratova, B. L. Pelekh, G. G Vlaikov, A. V. Maksimuk, and G. P. Urusova, Statics of Structural Elements [in Russian], A.S.K., Kiev (1999), pp. 78–91.

  6. A. P. Gavris’ and P. R. Shevchuk, “Mathematical modeling of the processes occurring during high-temperature spray coating,” Mat. Met. Fiz.-Mekh. Polya, Issue 33, 13–18 (1991); English translation: J. Sov. Math., 65, No. 5, 1818–1822 (1993); https://doi.org/10.1007/BF01097295.

  7. N. Hembara and Yo. Luchko, “Modeling of the heat conduction of shells with bilateral multilayer coatings,” Visn. Ternopil. Nats. Tekh. Univ., 69, No. 1, 222–230 (2013).

  8. A. D. Gorbunov, “Analytic evaluation of heating (cooling) of simple bodies coated with thin shells,” Metallurg. Teplotekh., Issue 2 (17), 56–62 (2010).

  9. Ya. M. Grigorenko and A. T. Vasilenko, Theory of Shells with Variable Stiffness, in: A. N. Guz (editor), Methods for the Numerical Analysis of Shells [in Russian], Vol. 4, Naukova Dumka, Kiev (1981).

  10. A. I. Zhornik and V. A. Kirichek, “Approximate solution of the problem of heat conduction for a solid cylinder with thin coating,” Nauch. Diskuss.: Vopr. Tekh. Nauk, Nos. 9-10 (28), 21–29 (2015).

  11. D. D. Zakharov, “Effective high-order approximations of layered coatings and linings of anisotropic elastic, viscoelastic and nematic materials,” Prikl. Mat. Mekh., 74, No. 3, 403–418 (2010); English translation: J. Appl. Math. Mech., 74, No. 3, 286–296 (2010); https://doi.org/10.1016/j.jappmathmech.2010.07.004.

  12. D. V. Ivashchuk, Investigation of Thermodiffusion Processes and Stressed States in Bodies with Coatings [in Russian], Author’s Abstract of the Candidate-Degree Thesis (Physics and Mathematics), Lviv (1978).

  13. Yu. M. Kolyano and M. E. Khomyakevich, “Generalized heat conduction in coated bodies that accounts for the coating curvature,” Inzh.-Fiz. Zh., 65, No. 6, 745–749 (1993); English translation: J. Eng. Phys. Thermophys., 65, No. 6, 1251–1256 (1993); https://doi.org/10.1007/BF00861951.

  14. G. M. Komarov, “Conditions of conjugation through a thermally thin layer in the problems of heat conduction,” Dop. Nats. Akad. Nauk Ukr., No. 7, 26–32 (1996).

  15. L. B. Lerman, “Layered inhomogeneous objects with interfaces. Application of translation matrices in some applied problems,” Khim. Fiz. Tekhnol. Poverkh., 7, No. 3, 255–284 (2016); https://doi.org/10.15407/hftp07.03.255.

  16. Yo. Yo. Luchko, “Numerical analysis of the heat conduction of concrete plates with multilayer coatings,” Nauk. Visn. Mukachiv. Tekhnol. Inst., Issue 2, 40–46 (2006).

  17. Ya. S. Pidstryhach, Selected Works [in Ukrainian], Naukova Dumka, Kyiv (1995).

    MATH  Google Scholar 

  18. Ya. S. Podstrigach, “On the application of the operator method to the derivation of the main relations of the theory of heat conduction of thin-walled elements and composite structures,” Tepl. Napryazh. Élement. Konstrukts., Issue 5, 24–35 (1965).

  19. Ya. S. Podstrigach., Yu. M. Kolyano, and M. M. Semerak, Temperature Fields and Stresses in Elements of Electrovacuum Devices [in Russian], Naukova Dumka, Kiev (1981).

  20. Ya. S. Podstrigach and R. N. Shvets, Thermoelasticity of Thin Shells [in Russian], Naukova Dumka, Kiev (1978).

    MATH  Google Scholar 

  21. Ya. S. Podstrigach and P. R. Shevchuk, “Effect of surface layers on diffusion processes and the resulting stress state in solids,” Fiz.-Khim. Mekh. Mater., 3, No. 5, 575–583 (1967); English translation: Sov. Mater. Sci., 3, No. 5, 420–426 (1968); https://doi.org/10.1007/BF00716058.

  22. Ya. S. Podstrigach and P. R. Shevchuk, “Temperature fields and stresses in bodies with thin coatings,” Tepl. Napryazh. Élement. Konstrukts., Issue 7, 227–233 (1967).

  23. R. F. Terlets’kyi and O. P. Turii, “Modeling and investigation of heat transfer in plates with thin coatings with regard for the influence of radiation,” Mat. Met. Fiz.-Mekh. Polya, 55, No. 2, 186–201 (2012); English translation: J. Math. Sci., 192, No. 6, 703–722 (2013); https://doi.org/10.1007/s10958-013-1427-1.

  24. N. P. Fleishman, “Mathematical models of thermal conjugation of the media with thin foreign interlayers or coatings,” Visn. L’viv. Univ. Ser. Mekh.-Mat., Issue 39, 30–34 (1993).

  25. V. A. Shevchuk, “Analytical solution of nonstationary heat conduction problem for a half-space with a multilayer coating,” Inzh-Fiz. Zh., 86, No. 2, 423–431 (2013); English translation: J. Eng. Phys. Thermophys., 86, No. 2, 450–459 (2013); https://doi.org/10.1007/s10891-013-0854-7.

  26. V. A. Shevchuk, “Determination of residual stresses in a cylinder with thin multilayer coating,” Prykl. Probl. Mekh. Mat., Issue 10, 159–167 (2012).

  27. V. A. Shevchuk, “Construction of generalized boundary conditions of convective heat exchange of bodies with a medium through thin nonplanar coatings,” Dop. Nats. Akad. Nauk Ukr., No. 7, 76–82 (2011).

  28. V. A. Shevchuk, “Problem of thermoelasticity for a half space with a multilayer coating,” Prykl. Probl. Mekh. Mat., Issue 11, 157–163 (2013).

  29. V. A. Shevchuk, “Problem of thermoelasticity for a cylinder with thin multilayer coating,” Mat. Met. Fiz.-Mekh. Polya, 60, No. 2, 117–129. (2017); English translation: J. Math. Sci., 243, No. 1, 145–161 (2019); https://doi.org/10.1007/s10958-019-04532-2.

  30. V. A. Shevchuk, “Nonstationary one-dimensional problem of heat conduction for a cylinder with a thin multilayer coating,” Mat. Met. Fiz.-Mekh. Polya, 54, No. 2, 179–185 (2011); English translation: J. Math. Sci., 184, No. 2, 215–223 (2012); https://doi.org/10.1007/s10958-012-0865-5.

  31. V. A. Shevchuk, “Generalized boundary conditions for heat transfer between a body and the surrounding medium through a multilayer thin covering,” Mat. Met. Fiz.-Mekh. Polya, Issue 38, 116–120 (1995); English translation: J. Math. Sci., 81, No. 6, 3099–3102 (1996); https://doi.org/10.1007/BF02362603.

  32. V. A. Shevchuk, “Analysis of the stressed state of bodies with multilayer thin coatings,” Probl. Prochn., No. 1, 136–150 (2000); English translation: Strength Mater., 32, No. 1, 92–102 (2000); https://doi.org/10.1007/BF02511512.

  33. V. A. Shevchuk, “Evaluation of temperature stresses in bodies with thin multilayer coatings,” Visn. Dnipropetrovs’k. Univ. Ser. Mekhanika, 19, Issue 15(1), 129–139 (2011).

  34. V. A. Shevchuk, “Heat conduction in plates with thin two-sided multilayer coatings under the conditions of nonstationary heating,” Mat. Met. Fiz.-Mekh. Polya, 58, No. 2, 148–157 (2015); English translation: J. Math. Sci., 223, No. 2, 184–197 (2017); https://doi.org/10.1007/s10958-017-3347-y.

  35. V. A. Shevchuk, “Thermal stressed state of a plate with thin bilateral multilayer coating under the conditions of nonstationary heat exchange,” Prykl. Probl. Mekh. Mat., Issue 14, 113–122 (2016).

  36. V. A. Shevchuk, “Generalized boundary conditions of radiant-convection heat exchange of bodies with ambient medium through multilayer nonplanar coatings,” Mat. Met. Fiz.-Mekh. Polya, 62, No. 2, 82–97 (2019); English translation: J. Math. Sci., 261, No. 1, 95–114 (2022); https://doi.org/10.1007/s10958-022-05741-y.

  37. V. A. Shevchuk and A. P. Gavris’, “Nonstationary heat-conduction problem for a half space with a multilayer coating upon cyclic change in the ambient temperature,” Inzh.-Fiz. Zh., 93, No. 6, 1543–1551 (2020); English translation: J. Eng. Phys. Thermophys., 93, No. 6, 1489–1497 (2020); https://doi.org/10.1007/s10891-020-02254-w.

  38. V. A. Shevchuk and O. P. Havrys’, “Choice of the iterative method for the solution of nonlinear nonstationary problem of heat conduction for a half space in the course of radiative cooling,” Mat. Met. Fiz.-Mekh. Polya, 57, No. 4, 179–185 (2014); English translation: J. Math. Sci., 220, 226–234 (2017); https://doi.org/10.1007/s10958-016-3179-1.

  39. V. A. Shevchuk and O. P. Havrys’, “Thermal stressed state of a half space with multilayer coating under radiative-convective heat exchange,” Prykl. Probl. Mekh. Mat., Issue 15, 171–179 (2017).

  40. V. A. Shevchuk and B. M. Kalynyak, “Stressed state of cylindrical bodies with multilayer inhomogeneous coatings,” Fiz.-Khim. Mekh. Mater., 46, No. 6, 35–41 (2010); English translation: Mater. Sci., 46, No. 6, 747–756 (2011); https://doi.org/10.1007/s11003-011-9348-y.

  41. V. Shevchuk and O. Havrys’, “Analytic solution of the boundary-value problem of heat conduction for a 'half space–multilayer coating' system with an inhomogeneous initial condition under convective heat exchange with ambient media,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 24, 130–140 (2016).

  42. V. Shevchuk and O. Havrys’, “Investigation of the temperature field of a half space with multilayer coating under the conditions of radiative-convective heat exchange,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 20, 229–240 (2014).

  43. V. Shevchuk and O. Havrys’, “Problem of thermoelasticity for a half space with multilayer coating subjected to cyclic thermal treatment,” in: R. M. Kushnir and H. S. Kit (editors), Mathematical Problems in the Mechanics of Inhomogeneous Structures: Collection of Scientific Works of the 10th International Scientific Conference [in Ukrainian], Issue 5, Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv (2019), pp. 129–130.

  44. V. Shevchuk, O. Havrys’, and P. Shevchuk, “Nonlinear boundary-value problem of radiative-convective heat exchange of bodies with multilayer coatings,” Mashynoznavstvo, No. 5 (155), 21–25 (2010).

  45. P. R. Shevchuk and A. P. Gavris’, “The influence of radiant heating on temperature schemes and residual stresses under high-temperature spray coating,” Mat. Met. Fiz.-Mekh. Polya, Issue 30, 69–73 (1989); English translation: J. Sov. Math., 63, No. 3, 371–374 (1993); https://doi.org/10.1007/BF01255745.

  46. M. A. Al-Nimr and M. K. Alkam, “A generalized thermal boundary condition,” Heat Mass Transf., 33, Nos. 1-2, 157–161 (1997); https://doi.org/10.1007/s002310050173.

    Article  ADS  CAS  MATH  Google Scholar 

  47. A. Auvray and G. Vial, “Asymptotic expansions and effective boundary conditions: a short review for smooth and nonsmooth geometries with thin layers,” ESAIM Proc. Surv., 61, 38–54 (2018); https://doi.org/10.1051/proc/201861038.

  48. L. Y. Bahar, “Transfer matrix approach to layered systems,” J. Eng. Mech. Div., 98, No. 5, 1159–1172 (1972); https://doi.org/10.1061/JMCEA3.0001660.

    Article  MATH  Google Scholar 

  49. L. Y. Bahar and R. B. Hetnarski, “Coupled thermoelasticity of a layered medium,” J. Therm. Stresses, 3, No. 1, 141–152 (1980); https://doi.org/10.1080/01495738008926958.

    Article  MATH  Google Scholar 

  50. A. Campo, “A quasilinearization approach for the transient response of bodies with surface radiation,” Lett. Heat Mass Transf., 4, No. 4, 291–298 (1977); https://doi.org/10.1016/0094-4548(77)90118-7.

    Article  ADS  MATH  Google Scholar 

  51. J.-L. Chen, N. O. Hembara, and M. M. Hvozdyuk, “Nonstationary temperature problem for a cylindrical shell with multilayer thin coatings,” Fiz.-Khim. Mekh. Mater., 54, No. 3, 49–57 (2018); English translation: Mater. Sci., 54, No. 3, 339–348 (2018); https://doi.org/10.1007/s11003-018-0190-3.

  52. Y. Z. Chen, “Study of multiply-layered cylinders made of functionally graded materials using the transfer matrix method,” J. Mech. Mater. Struct., 6, No. 5, 641–657 (2011); https://doi.org/10.2140/jomms.2011.6.641.

    Article  MATH  Google Scholar 

  53. H. J. Choi, T. E. Jin, and K. Y. Lee, “Transient thermal stresses in a cladded semi-infinite medium containing an underclad crack,” J. Therm. Stresses, 18, No. 3, 269–290 (1995); https://doi.org/10.1080/01495739508946303.

    Article  MATH  Google Scholar 

  54. F. Du, M. R. Lovell, and T. W. Wu, “Boundary element method analysis of temperature fields in coated cutting tools,” Int. J. Solids Struct., 38, Nos. 26-27, 4557–4570 (2001); https://doi.org/10.1016/S0020-7683(00)00291-2.

    Article  MATH  Google Scholar 

  55. X. Hou, Z. Deng, and G. Yin, “Application of transfer matrix method in heat transfer performance analysis of multi-re-entrant honeycomb structures,” Heat Mass Transf., 50, No. 12, 1765–1782 (2014); https://doi.org/10.1007/s00231-014-1352-y.

    Article  ADS  CAS  MATH  Google Scholar 

  56. S. A. Lukasiewicz, “Thermal stresses in shells,” in: R. B. Hetnarski (editor), Thermal Stresses III, North Holland, Amsterdam (1989), pp. 355–553.

    MATH  Google Scholar 

  57. D. Moulton and J. A. Pelesko, “Thermal boundary conditions: an asymptotic analysis,” Heat Mass Transf., 44, No. 7, 795–803 (2007); https://doi.org/10.1007/s00231-007-0277-0.

    Article  ADS  MATH  Google Scholar 

  58. L. A. Pipes, “Matrix analysis of heat transfer problems,” J. Franklin Inst., 263, No. 3, 195–206 (1957); https://doi.org/10.1016/0016-0032(57)90927-4.

    Article  MathSciNet  CAS  MATH  Google Scholar 

  59. L. Rahmani and G. Vial, “Reinforcement of a thin plate by a thin layer,” Math. Meth. Appl. Sci., 31, No. 3, 315–338 (2008); https://doi.org/10.1002/mma.910.

    Article  MathSciNet  MATH  Google Scholar 

  60. A. A. Rizk and F. Erdogan, “Cracking of coated materials under transient thermal stresses,” J. Thermal Stresses, 12, No. 2, 125–168 (1989); https://doi.org/10.1080/01495738908961959.

    Article  MATH  Google Scholar 

  61. A. E.-F. A. Rizk and S. F. Radwan, “Transient thermal stress problem for a cracked semi-infinite medium,” J. Thermal Stresses, 15, No. 4, 451–468 (1992); https://doi.org/10.1080/01495739208946150.

    Article  ADS  MATH  Google Scholar 

  62. V. A. Shevchuk, “Calculation of thermal state of bodies with multilayer coatings,” in: Proc. of the Internat. Conf. “Computational Science – ICCS 2002” (April 21–24, 2002, Netherlands), Ser.: P. M. A. Sloot, A. G. Hoekstra, C. J. K. Tan, and J. J. Dongarra (editors), Lecture Notes in Computer Science, Vol. 2330, Springer, Berlin (2002), pp. 500–509; https://doi.org/10.1007/3-540-46080-2_52.

  63. V. A. Shevchuk, “Generalized boundary conditions to solving thermal stress problems for bodies with thin coatings,” in: R. B. Hetnarski (editor), Encyclopedia of Thermal Stresses, Vol. 4, Springer, Dordrecht (2014), pp. 1942–1953; https://doi.org/10.1007/978-94-007-2739-7_601.

  64. V. A. Shevchuk, “Modeling and computation of heat transfer in a system 'body –multilayer coating',” Heat Transf. Res., 37, No. 5, 421–433 (2006); https://doi.org/10.1615/HeatTransRes.v37.i5.50.

    Article  MATH  Google Scholar 

  65. V. A. Shevchuk, “Thermoelasticity problem for a multilayer coating/half-space assembly with undercoat crack subjected to convective thermal loading,” J. Thermal Stresses, 40, No. 10, 1215–1230 (2017); https://doi.org/10.1080/01495739.2017.1301788.

  66. V. A. Shevchuk and V. V. Silberschmidt, “Analysis of damage evolution in thick ceramic coatings,” Mater. Sci. Eng. A, 426, Nos. 1-2, 121–127 (2006); https://doi.org/10.1016/j.msea.2006.03.080.

    Article  CAS  MATH  Google Scholar 

  67. V. A. Shevchuk and V. V. Silberschmidt, “Analysis of damage evolution in thin multilayer coatings under thermal loading,” in: F. Ziegler, R. Heuer, and C. Adam (editors), Proc. of the 6th Internat. Congr. on Thermal Stresses (May 26–29, 2005, Vienna, Austria), Vol. 2, Vienna University of Technology, Vienna (2005), pp. 313–316.

  68. V. A. Shevchuk and V. V. Silberschmidt, “Semi-analytical analysis of thermally induced damage in thin ceramic coatings,” Int. J. Solids Struct., 42, Nos. 16-17, 4738–4757 (2005); https://doi.org/10.1016/j.ijsolstr.2005.02.002.

    Article  MATH  Google Scholar 

  69. T. C. T. Ting, “Mechanics of a thin anisotropic elastic layer and a layer that is bonded to an anisotropic elastic body or bodies,” Proc. Roy. Soc. A, 463, Issue 2085, 2223–2239 (2007); https://doi.org/10.1098/rspa.2007.1875.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. H. Wang and Q. Qin, “Thermal analysis of a functionally graded coating/substrate system using the approximated transfer approach,” Coatings, 9, No. 1, article 51, 17p. (2019); https://doi.org/10.3390/coatings9010051.

  71. X. Wang and L. J. Sudak, “Three-dimensional analysis of multi-layered functionally graded anisotropic cylindrical panel under thermomechanical loading,” Mech. Mater., 40, Nos. 4-5, 235–254 (2008); https://doi.org/10.1016/j.mechmat.2007.06.008.

    Article  MATH  Google Scholar 

  72. W. Wunderlich and W. D. Pilkey, Mechanics of Structures: Variational and Computational Methods, CRC Press Inc., Boca Raton (2002).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shevchuk.

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 64, No. 3, pp. 41–54, July–September, 2021.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchuk, V.A. Methodology of Investigations of the Thermal Stressed State of Bodies with Thin Multilayer Coatings. J Math Sci 278, 780–794 (2024). https://doi.org/10.1007/s10958-024-06961-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-024-06961-0

Keywords

Navigation