Skip to main content
Log in

Boundary Controllability for Inhomogeneous Multidimensional Thermoelastic Diffusion Problem by Hilbert’s Uniqueness Method

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we study the stabilization and the partial exact controllability of an inhomogeneous multidimensional thermoelastic diffusion problem by a memory function introduced on a part of the boundary of the material. By using the Nakao difference inequality, we prove that the energy of the system decays to zero exponentially at a rate determined explicitly by the physical parameters. Then by the Hilbert uniqueness method combined with Russell’s principle “controllability via stabilizability,” we prove that after certain threshold time moment, the considered system is partially controllable under a smallness restriction on the coupling parameters stress-temperature and stress-diffusion. The boundary control function is determined explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Adams, Sobolev Spaces, Academic Press, New York (1975).

    MATH  Google Scholar 

  2. M. Aouadi, “Generalized theory of thermoelstic diffusion for anisotropic media,” J. Therm. Stresses, 31, 270–285 (2008).

    Article  Google Scholar 

  3. M. Aouadi and K. Boulehmi, “Partial exact controllability for inhomogeneous multidimensional thermoelastic diffusion problem,” J. Evol. Equat. Control Theory, 5, 201–224 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Aouadi, B. Lazzari, and R. Nibbi, “Exponential decay in thermoelastic materials with voids and dissipative boundary without thermal dissipation,” Z. Angew. Math. Phys., 63, 961–973 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Aouadi, B. Lazzari, and R. Nibbi, “Energy decay in thermoelastic diffusion theory with second sound and dissipative boundary,” Mecanica, 48, 2159–2171 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  6. R. F. Apolaya, “Exact controllability for temporally wave equation,” Portug. Math., 51, 475–488 (1994).

    MathSciNet  MATH  Google Scholar 

  7. P. Barral and P. Quintela, “A numerical method for simulation of thermal stresses during casting of aluminium slabs,” Comput. Methods Appl. Mech. Eng., 178, 69–88 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Bermudez, M. C. Muñoz, and P. Quintela, “Numerical solution of a three-dimensional thermoelectric problem taking place in an aluminum electrolytic cell,” Comput. Methods Appl. Mech. Eng., 106, 129–142 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Boulehmi and M. Aouadi, “Decay of solutions in inhomogeneous thermoelastic diffusion bars,” Appl. Anal., 93, 281–304 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  10. C. M. Dafermos, “On the existance and the asymptotic stability of solution to the equations of linear thermoelasticity,” Arch. Rat. Mech. Anal., 29, 241–271 (1968).

    Article  MATH  Google Scholar 

  11. L. De Teresa and E. Zuazua, “Controllability of the linear system of thermoelastic plates,” Adv. Differ. Equations, 1, 369–402 (1996).

    MathSciNet  MATH  Google Scholar 

  12. H. Gao and J. E. Muñoz Rivera, “On the exponential stability of thermoelastic problem with memory,” Appl. Anal., 78, 379–403 (2001).

  13. S.W. Hansen, “Boundary control of a one-dimensional linear thermoelastic rod,” SIAM J. Control Optim., 32, 1054–1074 (1994).

    Article  MathSciNet  Google Scholar 

  14. V. Komornick and E. Zuazua, “A direct method for boundary stabilisation of the wave equation,” J. Math. Pures Appl., 69, 33–54 (1990).

    MathSciNet  Google Scholar 

  15. I. Lasiecka, Mathematical Control Theory of Coupled PDEs, SIAM, Philadelphia (2002).

    Book  MATH  Google Scholar 

  16. G. Lebeau and E. Zuazua, “Sur la décroissance non uniforme de l’énergie dans le système de la thermoélasticité linéaire,” C. R. Acad. Sci. Paris. Ser. I. Math., 324, 409–415 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Lebeau and E. Zuazua, “Null controllability of a system of linear thermoelasticity,” Arch. Rat. Mech. Anal., 141, 297–329 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  18. J. L. Lions, Contȏlabilité Exacte Perturbations et Stabilisations des Systèmes Distribués. Tome 2. Pertubations, Masson, Paris (1988).

  19. J. L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problem and Applications, Springer-Verlag (1972).

  20. W. J. Liu, “Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity,” ESAIM: Control Optim. Calc. Var., 3, 23–48 (1998).

    Google Scholar 

  21. W. J. Liu, “Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity. Correction,” ESAIM: Control Optim. Calc. Var., 3, 323–327 (1998).

    Google Scholar 

  22. W. J. Liu and G. H. Williams, “Partial exact controllability for the linear thermo-viscoelastic model,” Electr. J. Differ. Equations, 1998, 1–11 (1998).

    MathSciNet  MATH  Google Scholar 

  23. W. J. Liu and E. Zuazua, “Uniform stabilization of higher-dimensional system of thermoelasticity with a nonlinear boundary feedback,” Quart. Appl. Math., 59, 269–314 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  24. J. E. Muñoz Rivera and M. L. Olivera, “Stability in inhomogeneous and anisotropic thermoelasticity,” Boll. U.M.I., 7, 115–127 (1997).

  25. M. Nakao, “A difference inequality and its application to nonlinear evolution equations,” J. Math. Soc. Jpn., 30, 291–315 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. K. Nandakumaran and R. K. George, “Partial exact controllability of linear thermoelastic system,” Indian J. Math., 37, 165–174 (1995).

    MathSciNet  MATH  Google Scholar 

  27. K. Narukawa, “Boundary value control of thermoelastic systems,” Hiroshima Math. J., 13, 227–272 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  28. J. A. Nohel and D. F. Shea, “Frequency domain methods for Volterra equations,” Adv. Math., 22, 278–304 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel (1993).

  30. G. Propst and J. Prüss, “On wave equations with boundary dissipation of memory type,” J. Integral Equations Appl., 8, 99–123 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  31. D. L. Russell, “Controllability and stabilizability theory for linear partial differential equations,” Recent Progr. Open Questions SIAM Rew., 310, 801–806 (1990).

    Google Scholar 

  32. O. J. Staffans, “An inequality for positive definite Volterra kernels,” Proc. Am. Math. Soc., 58, 205–210 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  33. O. J. Staffans, “On a nonlinear hyperbolic Volterra equation,” SIAM J. Math. Anal., 11, 793–812 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Zuazua, “Controllability of the linear system of thermoelasticity,” J. Math. Pure. Appl., 74, 303–346 (1995).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aouadi.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 178, Optimal Control, 2020.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouadi, M., Boulehmi, K. Boundary Controllability for Inhomogeneous Multidimensional Thermoelastic Diffusion Problem by Hilbert’s Uniqueness Method. J Math Sci 276, 253–273 (2023). https://doi.org/10.1007/s10958-023-06739-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06739-w

Keywords and phrases

AMS Subject Classification

Navigation