Skip to main content
Log in

Mappings Generating Embedding Operators in Orlicz-Sobolev Spaces

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We study embedding operators on Orlicz–Sobolev spaces generated by the composition rule. Using the composition operators we consider embeddings of the Orlicz–Sobolev spaces into weighted Orlicz spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York etc. (1968).

  2. V. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer, Berlin (2011).

  3. P. Koskela, J. Onninen, and J. T. Tyson, “Quasihyperbolic boundary conditions and capacity: Poincaré domains,” Math. Ann. 323 811–830 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Gol’dshtein and L. Gurov, “Applications of change of variables operators for exact embedding theorems,” Integral Equations Oper. Theory 19, No. 1, 1–24 (1994).

  5. V. Gol’dshtein and A. Ukhlov, “Weighted Sobolev spaces and embedding theorems,” Trans. Am. Math. Soc. 361, No. 7, 3829–3850 (2009).

  6. V. Gol’dshtein and A. Ukhlov, “On the first eigenvalues of free vibrating membranes in conformal regular domains,” Arch. Ration. Mech. Anal. 221, No. 2, 893–915 (2016).

  7. V. Gol’dshtein and A. Ukhlov, “The spectral estimates for the Neumann–Laplace operator in space domains,” Adv. Math. 315, 166–193 (2017).

  8. V. G. Maz’ya, “On weak solutions of the Dirichlet and Neumann problems,” Trans. Mosc. Math. Soc. 20, 135–172 (1971).

  9. S. L. Sobolev, “Sur quelques groiupes de transformations de l’espace n-dimensionnel” [in French], Dokl. Acad. Sci. URSS 32, 380–382 (1941).

    MATH  Google Scholar 

  10. A. D. Ukhlov, “On mappings, which induce embeddings of Sobolev spaces,” Sib. Math. J. 34, No. 1, 165–171 (1993).

    Article  MATH  Google Scholar 

  11. S. K. Vodop’yanov and A. D. Ukhlov, “Sobolev spaces and (p, q)-quasiconformal mappings of Carnot groups,” Sib. Math. J. 39, No. 4, 665–682 (1998).

  12. S. K. Vodop’yanov and A. D. Ukhlov, “Superposition operators in Sobolev spaces,” Russ. Math. 46, No. 10, 9–31 (2002).

  13. S. K. Vodop’yanov and A. D. Ukhlov, “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I,” Sib. Adv. Math. 14, No. 4, 78–125 (2004).

  14. S. K. Vodop’yanov and A. D. Ukhlov, “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. II,” Sib. Adv. Math. 15, No. 1, 91–125 (2005).

  15. V. Gol’dshtein, V. Pchelintsev, and A. Ukhlov, “On the first eigenvalue of the degenerate p-Laplace operator in non-convex domains,” Integral Equations Oper. Theory 90, No. 4, Paper No. 43 (2018).

  16. V. Maz’ya and T. O. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions, Pitman, Boston etc. (1985).

  17. P. Harjulehto and P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Springer, Cham (2019).

    Book  MATH  Google Scholar 

  18. A. Cianchi, “A sharp embedding theorem for Orlicz–Sobolev spaces,” Indiana Univ. Math. J. 45, No. 1, 39–65 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Cianchi, “Optimal Orlicz–Sobolev embeddings,” Rev. Mat. Ibèroam. 20, No. 2, 427–474 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  20. C. O. Alves, G. M. Figueiredo, and J. A. Santos, “Strauss and Lions type results for a class of Orlicz–Sobolev spaces and applications,” Topol. Methods Nonlinear Anal. 44, No. 2, 435–456 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Fukagai, M. Ito, and K. Narukawa, “Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on ,” Funkc. Ekvacioj, Ser. Int. 49, No. 2, 235–267 (2006).

  22. E. D. Silva, M. L. Carvalho, J. C. de Albuquerque, and S. Bahrouni, “Compact embedding theorems and a Lions’ type lemma for fractional Orlicz–Sobolev spaces,” J. Differ. Equations 300, 487–512 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Heikkinen, “Characterizations of Orlicz–Sobolev spaces by means of generalized Orlicz– Poincaré inequalities,” J. Funct. Spaces Appl. Article ID 426067 (2012)

  24. H. Tuominen, “Characterization of Orlicz–Sobolev space,” Ark. Mat. 45, No. 1, 123–139 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  25. T. K. Donaldson, Orlicz–Sobolev Spaces and Applications, Australian National Univ. Press, Canberra (1969).

    Google Scholar 

  26. T. K. Donaldson and N. S. Trudinger, “Orlicz–Sobolev spaces and imbedding theorems,” J. Funct. Anal. 8, 52–75 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  27. R. A. Adams, “On the Orlicz–Sobolev imbedding theorem,” J. Funct. Anal. 24, 241–257 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Cianchi and V. G. Maz’ya, “Sobolev embeddings into Orlicz spaces and isocapacitary inequalities,” Trans. Am. Math. Soc. 376, No. 1, 91–121 (2023).

  29. T. Heikkinen and N. Karak, “Orlicz–Sobolev embeddings, extensions and Orlicz–Poincaré inequalities,” J. Funct. Anal. 282, No. 2, Article ID 109292 (2022).

  30. S. Hencl and L. Kleprlik, “Composition of q-quasiconformal mappings and functions in Orlicz–Sobolev spaces,” Ill. J. Math. 56, No. 3, 931–955 (2012).

    MathSciNet  MATH  Google Scholar 

  31. A. V. Menovshchikov, “Composition operators in Orlicz–Sobolev spaces,” Sib. Math. J. 57, No. 5, 849–859 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  32. A. V. Menovshchikov, “Regularity of the inverse of a homeomorphism of a Sobolev–Orlicz space,” Sib. Math. J. 58, No. 4, 649–662 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  33. M. A. Krasnosel’skii and Ya. B. Rutitskii, Convex Functions and Orlicz Spaces, Noordhoff, Groningen (1961).

  34. M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York etc. (1991).

    MATH  Google Scholar 

  35. J. Malý, D. Swanson, and W. P. Ziemer, “Fine behavior of functions whose gradients are in an Orlicz space,” Stud. Math. 190, No. 1, 33–71 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Hajlasz, “Change of variables formula under minimal assumptions,” Colloq. Math. 64, No. 1, 93–101 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  37. V. G, Maz’ya and V. P. Khavin, “Non-linear potential theory,” Russ. Math. Surv. 27, No. 1, 71–148 (1972).

  38. H. Tuominen, “Pointwise behaviour of Orlicz–Sobolev functions,” Ann. Mat. Pura Appl. (4) 188, No. 1, 35–59 (2009).

  39. M. Rudd, “A direct approach to Orlicz–Sobolev capacity,” Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 60, No.1, 129–147 (2005).

  40. G. Choquet, “Theory of capacities,” Ann. Inst. Fourier 5, 131–295 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford (1993).

    MATH  Google Scholar 

  42. R. A. Adams, Sobolev Spaces, Academic Press, New York etc. (1975).

    MATH  Google Scholar 

  43. A. Cianchi, “Boundedness of solutions to variational problems under general growth conditions,” Commun. Partial Differ. Equations 22, No. 9-10, 1629–1646 (1997).

    MathSciNet  MATH  Google Scholar 

  44. A. Cianchi and V. G. Maz’ya, “Quasilinear elliptic problems with general growth and merely integrable, or measure, data,” Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 164, 189–215 (2017).

  45. V. G. Maz’ya, “Classes of regions and imbedding theorems for function spaces,” Sov. Math., Dokl. 1 882–885 (1960).

  46. P. Hajlasz and P. Koskela, “Isoperimetric inequalities and imbedding theorems in irregular domains,” J. Lond. Math. Soc., II. Ser. 58, No. 2, 425–450 (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ukhlov.

Additional information

Translated from Problemy Matematicheskogo Analiza 125, 2023, pp. 111-126.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menovshchikov, A., Ukhlov, A. Mappings Generating Embedding Operators in Orlicz-Sobolev Spaces. J Math Sci 276, 117–136 (2023). https://doi.org/10.1007/s10958-023-06729-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06729-y

Navigation