Skip to main content
Log in

THE DUAL RECIPROCITY BOUNDARY ELEMENT METHOD FOR ONE-DIMENSIONAL NONLINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This article describes a numerical method based on the dual reciprocity boundary element method (DRBEM) for solving some well-known nonlinear parabolic partial differential equations (PDEs). The equations include the classic and generalized Fisher’s equations, Allen–Cahn equation, Newell–Whithead equation, FitzHugh–Nagumo equation, and generalized FitzHugh–Nagumo equation with time-dependent coefficients. The concept of the dual reciprocity is used to convert the domain integral to the boundary that leads to an integration-free method. We employ the time stepping scheme to approximate the time derivative, and the linear radial basis functions (RBFs) are used as approximate functions in the presented method. The nonlinear terms are treated iteratively within each time step. The developed formulation is verified in some numerical test examples. The results of numerical experiments are compared with analytical solution to confirm the accuracy and efficiency of the presented scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used in this research article is not applicable as no specific data sets were utilized. The conclusions and findings presented in this paper are based on theoretical analysis, literature review, and other relevant scholarly resources. All references cited are available in the reference section for further examination.

References

  1. S. Abbasbandy, Soliton solutions for the Fitzhugh-Nagumo equation with the homotopy analysis method, Applied Mathematical Modelling 32(12) (2008) 2706-2714.

    Article  MathSciNet  Google Scholar 

  2. K. Al–Khaled, Numerical study of Fisher’s reaction–diffusion equation by the sinc collocation method, Journal of Computational and Applied Mathematics 137 (2001) 245–255.

    Article  MathSciNet  Google Scholar 

  3. S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. 27 (1979) 1085–1095.

    Article  Google Scholar 

  4. W. T. Ang, A Beginners Course in Boundary Element Methods, Universal Publishers, Boca Raton, USA, 2007.

    Google Scholar 

  5. P. Alipour, The BEM and DRBEM schemes for the numerical solution of the two-dimensional time-fractional diffusion-wave equations, Authorea, Inc 2023.

  6. G. Cao, B. Yu,L. Chen, W. Yao, Isogeometric dual reciprocity BEM for solving non-Fourier transient heat transfer problems in FGMs with uncertainty analysis, International Journal of Heat and Mass Transfer, 203, (2023) 123783.

    Article  Google Scholar 

  7. B. Yu, G. Cao, S. Ren, Y. Gong, C. Dong, An isogeometric boundary element method for transient heat transfer problems in inhomogeneous materials and the non-iterative inversion of loads, Applied Thermal Engineering 212, (2022) 118600.

    Article  Google Scholar 

  8. B. Yu, C. Geyong, G. Yanpeng, S. Ren, C. Dong. IG-DRBEM of three-dimensional transient heat conduction problems, Engineering Analysis with Boundary Elements, 128 (2021) 298-309.

    Article  MathSciNet  Google Scholar 

  9. B. Yu, G. Cao, Z. Meng, Y. Gong, C. Dong. Three–dimensional transient heat conduction problems in FGMs via IG–DRBEM, Computer Methods in Applied Mechanics and Engineering, 384 (2021) 113958.

    Article  MathSciNet  Google Scholar 

  10. B. Yu, G. Cao, W. Huo, H. Zhou, E. Atroshchenko. Isogeometric dual reciprocity boundary element method for solving transient heat conduction problems with heat sources, Journal of Computational and Applied Mathematics, 385 (2021) 113197.

    Article  MathSciNet  Google Scholar 

  11. B. Yu, H.L. Zhou, H.L. Chen, Y. Tong. Precise time-domain expanding dual reciprocity boundary element method for solving transient heat conduction problems, International Journal of Heat and Mass Transfer, 91 (2015) 110-118.

    Article  Google Scholar 

  12. D. G. Aronson, H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math. 30 (1978) 33-76.

    Article  MathSciNet  Google Scholar 

  13. A. H. Bhrawy, A Jacobi-Gauss-Lobatto collocation method for solving generalized Fitzhugh–Nagumo equation with time–dependent coefficients, Applied Mathematics and Computation 222 (2013) 255–264.

    Article  MathSciNet  Google Scholar 

  14. C. Bozkaya, Boundary element method solution of initial and boundary value problems in fluid dynamics and magnetohydrodynamics, Ph.D Thesis, Technical University of Midell East, 2008.

  15. C. A. Brebbia, D. Nardini, Dynamic analysis in solid mechanics by an alternative boundary element procedure, International Journal of Soil Dynamics and Earthquake Engineering 2 (1983), 228-233.

    Article  Google Scholar 

  16. C. A. Brebbia, P. W. Partridge, L. C. Wrobel, The dual reciprocity boundary elements method, Computational Mechanics Publications: Southampton and Elsevier Applied Science: New York, 1992.

  17. J.-W. Choi, H. G. Lee, D. Jeong, J. Kim, An unconditionally gradient stable numerical method for solving the Allen–Cahn equation, Physica A 388 (2009) 1791–1803.

    Article  MathSciNet  Google Scholar 

  18. M. Dehghan, F. Fakhar–Izadi, Pseudospectral methods for Nagumo equation, International Journal for Numerical Methods in Biomedical Engineering 27 (2011) 553–561.

    Google Scholar 

  19. M. Dehghan, A. Ghesmati, Solution of the second–order one–dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method, Engineering Analysis with Boundary Elements 34 (2010) 51–59.

    Article  MathSciNet  Google Scholar 

  20. M. Dehghan, A. Ghesmati, Application of the dual reciprocity boundary integral equation technique to solve the nonlinear Klein–Gordon equation, Computer Physics Communications 181 (2010) 1410–1418

    Article  MathSciNet  Google Scholar 

  21. M. Dehghan, D. Mirzaei, The boundary integral equation approach for numerical solution of the one–dimensional Sine–Gordon equation, Numerical Methods for Partial Differential Equations, 24 (2008) 1405–1415.

    Article  MathSciNet  Google Scholar 

  22. M. Dehghan, D. Mirzaei, A numerical method based on the boundary integral equation and dual reciprocity methods for one–dimensional Cahn–Hilliard equation, Engineering analysis with boundary elements 33 (2009) 522–528.

    Article  MathSciNet  Google Scholar 

  23. M. Dehghan, A. Shokri, Numerical solution of the nonlinear Klein–Gordon equation using radial basis functions, Journal of Computational and Applied Mathematics 230 (2009) 400–410.

    Article  MathSciNet  Google Scholar 

  24. M. Dehghan, M. Shirzadi, A meshless method based on the dual reciprocity method for one-dimensional stochastic partial differential equations, Numerical Methods for Partial Differential Equations 32 (2016) 292–306.

    Article  MathSciNet  Google Scholar 

  25. M. Dehghan, M. Shirzadi, The modified dual reciprocity boundary elements method and its application for solving stochastic partial differential equations, Engineering Analysis with Boundary Elements 58 (2015) 99–111.

    Article  MathSciNet  Google Scholar 

  26. X. Feng, A. Prohl, Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows, Numerische Mathematik 94 (2003) 33–65.

    Article  MathSciNet  Google Scholar 

  27. R. Fitzhugh, Impulse and physiological states in models of nerve membrane, Biophysics J 1 (1961) 445–466.

    Article  Google Scholar 

  28. G. Hariharan, K. Kannan, Haar wavelet method for solving Cahn–Allen equation, Applied Mathematical Sciences, 3 (2009) 2523–2533.

    MathSciNet  Google Scholar 

  29. G. Hariharan, K. Kannan, Haar wavelet method for solving FitzHugh–Nagumo equation, vol. 67, World Academy of Science, Engineering and Technology, 2010.

  30. I. Dag, A. Sahin, A. Korkmaz, Numerical investigation of the solution of Fisher’s equation via the B-spline Galerkin method, Numerical Methods for Partial Differential Equations, 26 (2010) 1483–1503.

    Article  MathSciNet  Google Scholar 

  31. S. R. Karur, P. A. Ramachandran, Radial basis function approximation in dual reciprocity method, Mathematical and Computer Modelling 20 (1994) 59–70.

    Article  MathSciNet  Google Scholar 

  32. J. Katsikadelis, Boundary Element Methods, Theory and Application, Elsevier, 2002.

    Google Scholar 

  33. T. Kawahara, M. Tanaka, Interaction of travelling fronts: an exact solution of a nonlinear diffusion equation, Physics Letters A 97 (1983) 311–314.

    Article  MathSciNet  Google Scholar 

  34. P. K. Kythe, Fundamental Solution for Differential Operators and Application, Birkhauser, Boston, 1996.

    Book  Google Scholar 

  35. H. Li, Y. Guo, New exact solutions to the Fitzhugh–Nagumo equation, Applied Mathematics and Computation 180 (2006) 524–528.

    Article  MathSciNet  Google Scholar 

  36. Y. Li, H. G. Lee, D. Jeong, J. Kim, An unconditionally stable hybrid numerical method for solving the Allen–Cahn equation, Computers & Mathematics with Applications 60 (2010) 1591–1606.

  37. T. Mavoungou, Y. Cherruault, Numerical study of Fisher’s equation by Adomian’s method, Mathematical and computer modelling 19 (1994) 89–95.

    Article  MathSciNet  Google Scholar 

  38. R. E. Mickens, A best finite–difference scheme for the Fisher equation, Numerical Methods for Partial Differential Equations 10 (1994) 581-585.

    Article  MathSciNet  Google Scholar 

  39. R. C. Mittal, S. Kumar, Numerical study of Fisher’s equation by wavelet Galerkin method, International Journal of Computer Mathematics 83 (2006) 287–298.

    Article  MathSciNet  Google Scholar 

  40. R. C. Mittal, G. Arora, Efficient numerical solution of Fisher’s equation by using B–spline method, International Journal of Computer Mathematics 87 (2010) 3039–3051.

    Article  MathSciNet  Google Scholar 

  41. M. C. Nucci, P.A. Clarkson, The nonclassical method is more general than the direct method for symmetry reductions: an example of the Fitzhugh–Nagumo equation, Physics Letters A 164 (1992) 49–56.

    Article  MathSciNet  Google Scholar 

  42. J. S. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proceedings of the IRE 50 (1962) 2061–2071.

    Article  Google Scholar 

  43. D. Olmos, B. D. Shizgal, A pseudospectral method of solution of Fisher’s equation, Journal of Computational and Applied Mathematics 193 (2006) 219–242.

    Article  MathSciNet  Google Scholar 

  44. C. Pozrikidis, A Practical Guide to Boundary Element Methods with the Software Library Bemlib, Chapman and Hall/CRC, 2002.

  45. Y. Qiu, D. M. Sloan, Numerical solution of Fisher’s equation using a moving mesh method, Journal of Computational Physics 146 (1998) 726–746.

    Article  MathSciNet  Google Scholar 

  46. J. Roessler, H. Hussner, Numerical solution of the 1+2dimensional Fisher’s equation by finite element and the Galerkin method, Mathematical and Computer Modelling 25 (1997) 57–67.

    Article  MathSciNet  Google Scholar 

  47. M. Shih, E. Momoniat, F. M. Mahomed, Approximate conditional symmetries and approximate solutions of the perturbed Fitzhugh–Nagumo equation, Journal of mathematical physics 46 (2005) 023503.

    Article  MathSciNet  Google Scholar 

  48. A. Shirzadi, V. Sladek, J. Sladek, A local integral equation formulation to solve coupled nonlinear reaction–diffusion equations by using moving least square approximation, Engineering Analysis with Boundary Elements 37 (2013) 8–14.

    Article  MathSciNet  Google Scholar 

  49. A. Shiva, H. Adibi, A numerical solution for advection–diffusion equation using dual reciprocity method, Numerical Methods for Partial Differential Equations, 29 (2013) 843–856.

    Article  MathSciNet  Google Scholar 

  50. A. Shokri, M. Dehghan, A Not–a–Knot meshless method using radial basis functions and predictor–corrector scheme to the numerical solution of improved Boussinesq equation, Computer Physics Communications 181 (2010) 1990–2000.

    Article  MathSciNet  Google Scholar 

  51. S. Tang, R. O. Weber, Numerical study of Fisher’s equation by a Petrov–Galerkin finite element method, The ANZIAM Journal 33 (1991) 27–38.

    MathSciNet  Google Scholar 

  52. H. Triki, A.–M. Wazwaz, On soliton solutions for the Fitzhugh–Nagumo equation with time–dependent coefficients, Applied Mathematical Modelling 37 (2013) 3821–3828.

    Article  MathSciNet  Google Scholar 

  53. R. A. Van Gorder, Gaussian waves in the Fitzhugh–Nagumo equation demonstrate one role of the auxiliar function \(H(x,t)\) in the homotopy analysis method, Communications in Nonlinear Science and Numerical Simulation 17 (2012) 1233–1240.

    Article  MathSciNet  Google Scholar 

  54. R. A. Van Gorder, K. Vajravelu, A variational formulation of the Nagumo reaction–diffusion equation and the Nagumo telegraph equation, Nonlinear Analysis: Real World Applications, 11 (2010) 2957–2962.

    MathSciNet  Google Scholar 

  55. X. Y. Wang, Exact and explicit solitary wave solutions for the generalized Fisher equation, Physics letters A 131 (1988) 277–279.

    Article  MathSciNet  Google Scholar 

  56. A. M. Wazwaz, A. Gorguis, An analytic study of Fisher’s equation by using Adomian decomposition method, Applied Mathematics and Computation 154 (2004) 609–620.

    Article  MathSciNet  Google Scholar 

  57. A. M. Wazwaz, The tanh–coth method for solitons and kink solutions for nonlinear parabolic equations, Applied Mathematics and Computation 188 (2007) 1467–1475.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Alipour.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alipour, P. THE DUAL RECIPROCITY BOUNDARY ELEMENT METHOD FOR ONE-DIMENSIONAL NONLINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS. J Math Sci 280, 131–145 (2024). https://doi.org/10.1007/s10958-023-06642-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06642-4

Keywords

Navigation