Skip to main content
Log in

On Banach Spaces and Fréchet Spaces of Laplace–Stieltjes Integrals

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We investigate the spaces of Laplace–Stieltjes integrals \( I\left(\sigma \right)={\int}_0^{\infty }f(x){e}^{x\sigma} dF(x), \) σ ∈ ℝ, F is a nonnegative nondecreasing unbounded function right continuous on [0, +∞), and f is a real-valued function on [0, +∞). This integral is a generalization of the Dirichlet series \( D\left(\sigma \right)={\sum}_{n=1}^{\infty }{d}_n{e}^{\uplambda_n\sigma } \) with nonnegative exponents λn increasing to +∞ if \( F(x)=n(x)={\sum}_{\lambda_n\le x}1, \) and f (x) = dn for x = λn and f (x) = 0 for x ≠ λn. For a positive continuous function h on [0, +∞) that increases to +∞, by LSh we denote a class of integrals I such that |f(x)| exp {xh(x)} → 0 as x →  + ∞ and define ‖Ih = sup {|f(x)| exp {xh(x)} : x ≥ 0}. We prove that if FV and ln F(x) = o(x) as x → +∞, then (LSh, ‖⋅‖h) is a nonuniformly convex Banach space. Some other properties of the space LSh and its dual space are also studied. As a consequence, we obtain results for the Banach spaces of Laplace–Stieltjes integrals of finite generalized order. Some results are refined in the case where I (σ) = D(σ). In addition, for fixed ϱ < +∞, we assume that \( {\overline{S}}_{\upvarrho} \) is a class of entire Dirichlet series D (σ) such that their generalized order \( {\upvarrho}_{\upalpha, \beta}\left[D\right]:= \underset{\upsigma \to +\infty }{\lim \kern0.5em \sup}\frac{\alpha \left(\ln M\left(\sigma, D\right)\right)}{\beta \left(\sigma \right)}\le \upvarrho, \) where \( M\left(\upsigma, D\right)={\sum}_{n=1}^{\infty}\left|{d}_n\right|{e}^{\upsigma {\lambda}_n} \) and the functions α and β are positive, continuous on [x0, +∞), and increasing to +∞. Further, for q ∈ ℕ, let

$$ {\left\Vert D\right\Vert}_{\upvarrho; q}=\sum \limits_{n=1}^{\infty}\left|{d}_n\right|\exp \left\{{\lambda}_n{\beta}^{-1}\left(\frac{\alpha \left({\lambda}_n\right)}{\upvarrho +1/q}\right)\right\},\kern2em d\left({D}_1,{D}_2\right)=\sum \limits_{q=1}^{\infty}\frac{1}{2^q}\frac{{\left\Vert {D}_1-{D}_2\right\Vert}_{\upvarrho; q}}{1+{\left\Vert {D}_1-{D}_2\right\Vert}_{\upvarrho; q}}. $$

The space with the metric d is denoted by \( {\overline{S}}_{\upvarrho, d} \) is a Fréchet space under certain conditions imposed on the functions α and β and the sequence (λn).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Sheremeta, “Asymptotical behaviour of Laplace–Stieltjes integrals,” Math. Stud. Monograph Series, 15, VNTL Publishers, Lviv (2010).

  2. O. B. Skaskiv, “On some relations between the maximum modulus and the maximal term of an entire Dirichlet series,” Math. Notes., 66, No. 1-2, 223–232 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Ye. Ovchar and O. B. Skaskiv, “Some analogue of theWiman inequality for the Laplace integrals on a small parameter,” Carpathian Math. Publ., 5, No. 2, 305–309 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. O. Kuryliak, I. E. Ovchar, O. B. Skaskiv, “Wiman’s inequality for Laplace integrals,” Int. J. Math. Anal. (Ruse), 8, No. 5–8, 381–385 (2014).

    Article  MathSciNet  Google Scholar 

  5. V. A. Trenogin, Functional Analysis [in Russian], Nauka, Moscow (1980).

    MATH  Google Scholar 

  6. M. M. Sheremeta, V. S. Dobushowskyy, A. O.Kuryliak, “On a Banach space of Laplace–Stieltjes integrals,” Mat. Stud., 48, No. 2, 143–149 (2017).

    MathSciNet  MATH  Google Scholar 

  7. M. M. Sheremeta, “On two classes of positive functions and the belonging to them of main characteristics of entire functions,” Mat. Stud., 19, No. 1, 75–82 (2003).

    MathSciNet  MATH  Google Scholar 

  8. O. P. Juneja, B. L. Srivastava, “On a Banach space of a class of Dirichlet series,” Indian J. Pure Appl. Math., 12, No. 4, 521–529 (1981).

    MathSciNet  MATH  Google Scholar 

  9. Ja. D. Pyanylo, M. M. Sheremeta, “On the growth of entire functions given by Dirichlet series,” Izv. Vyssh. Uchebn. Zaved. Mat, No. 10 (161), 91–93 (1975).

  10. M. M. Sheremeta, Entire Dirichlet Series [in Ukrainian], ISDO, Kiev (1993).

    MATH  Google Scholar 

  11. T. Husain, P. K. Kamthan, “Spaces of entire functions represented by Dirichlet series,” Collect. Math., 9, No. 3, 203–216 (1968).

    MathSciNet  MATH  Google Scholar 

  12. A. Kumar, G. S. Srivastava, “Spaces of entire functions of slow growth represented by Dirichlet series,” Portugal. Math., 51, No. 1, 3–11 (1994).

    MathSciNet  MATH  Google Scholar 

  13. S. I. Fedynyak, “A space of entire Dirichlet series,” Carpathian Math. Publ., 5, No. 2, 336–340 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Husain, The Open Mapping and Closed Graph Theorems in Topological Vector Spaces, Clarendon Press, Oxford (1965).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Kuryliak.

Additional information

Published in Neliniini Kolyvannya, Vol. 24, No. 2, pp. 185–196, April–June, 2021.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuryliak, A.O., Sheremeta, M.M. On Banach Spaces and Fréchet Spaces of Laplace–Stieltjes Integrals. J Math Sci 270, 280–293 (2023). https://doi.org/10.1007/s10958-023-06346-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06346-9

Navigation