Skip to main content
Log in

Generation of Multivariate Quadratic Quasigroups by Proper Families of Boolean Functions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper is devoted to the generation of multivariate quadratic quasigroups with the use of proper families of Boolean functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ahlawat, K. Gupta, and S. K. Pal, “Fast generation of multivariate quadratic quasigroups for cryptographic applications,” in: Proc. of IMA Conference on Mathematics in Defence (2009).

  2. G. Alagic, J. Alperin-Sheriff, D. Apron, D. Cooper, Q. Dang, Y.-K. Liu, C. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson, and D. Smith-Tone, Status Report on the First Round of the NIST Post-Quantum Cryptography Standardization Process, Nat. Inst. of Standards and Technology, Department of Commerce (2019).

    Book  Google Scholar 

  3. Y. Chen, D. Gligoroski, and S. J. Knapskog, “On a special class of multivariate quadratic quasigroups (MQQs),” J. Math. Cryptology, 7, No. 8, 111–141 (2013).

    MathSciNet  MATH  Google Scholar 

  4. Y. Chen, S. J. Knapskog, and D. Gligoroski, “Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity,” in: Inscrypt, ser. 6th Int. Conf. on Information Security and Cryptology, Science Press of China (2010), pp. 20–34.

  5. J. Ding and A. Petzoldt, “Current State of Multivariate Cryptography,” IEEE Security Privacy, 15, No. 4, 28–36 (2017).

    Article  Google Scholar 

  6. J.-C. Faugère, R. Ødegård, L. Perret, and D. Gligoroski, “Analysis of the MQQ Public Key Cryptosystem,” in: Int. Conf. on Cryptology and Network Security CANS 2010: Cryptology and Network Security, Lect. Notes Comput. Sci., Vol. 6467, Springer, Berlin (2010), pp. 169–183.

  7. M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide to the Theory of NP-Completeness, Freeman, New York (1979).

    MATH  Google Scholar 

  8. D. Gligoroski, S. Markovski, and S. J. Knapskog, “Multivariate quadratic trapdoor functions based on multivariate quadratic quasigroups,” in: Proc. of the American Conf. on Applied Mathematics (MATH’08), WSEAS Press (2008), pp. 44–49.

    Google Scholar 

  9. D. Gligoroski, S. Markovski, and S. J. Knapskog, Public Key Block Cipher Based on Multivariate Quadratic Quasigroups, Cryptology ePrint Archive, Report 2008/320, http://eprint.iacr.org/2008/320 (2008).

  10. D. Gligoroski, R. Ødegård, R. Jensen, L. Perret, J.-C. Faugère, S. J. Knapskog, and S. Markovski, “MQQ–SIG: an ultra-fast and provably CMA resistant digital signature scheme,” in: INTRUST ’11: Proc. of the Third Int. Conf. on Trusted Systems (2011), pp. 184–203.

  11. A. Klimov and A. Shamir, “A new class of invertible mappings,” in: Workshop on Cryptographic Hardware and Embedded Systems 2002, Lect. Notes Comput. Sci., Vol. 2523, Springer, Berlin (2002), pp. 470–483.

  12. D. Lau, Function Algebras on Finite Sets: A Basic Course on Many-Valued Logic and Clone Theory, Springer, Berlin (2006).

    MATH  Google Scholar 

  13. M. Mohamed, J. Ding, J. Buchmann, and F. Werner, “Algebraic attack on the (MQQ) public key cryptosystem,” in: CANS ’09 Proc. of the 8th Int. Conf. on Cryptology and Network Security, Berlin, Springer (2009), pp. 392–401.

  14. V. A. Nosov, “The criterion of regularity of a Boolean non-autonomous automaton with split input,” Intellekt. Sist., 3, No. 3-4, 269–280 (1998).

    Google Scholar 

  15. V. A. Nosov, “Construction of classes of Latin squares in a Boolean database,” Intellekt. Sist., 4, No. 3-4, 307–320 (1999).

    Google Scholar 

  16. V. A. Nosov, “Construction of a parametric family of Latin squares in a vector database,” Intellekt. Sist., 8, No. 1-4, 517–529 (2004).

    Google Scholar 

  17. V. A. Nosov, “Constructing Families of Latin Squares over Boolean Domains,” in: Boolean Functions in Cryptology and Information Security, IOS Press (2008), pp. 200–207.

    Google Scholar 

  18. V. A. Nosov and A. E. Pankratiev, “Latin squares over Abelian groups,” J. Math. Sci., 149, No. 3, 1230–1234 (2008).

    Article  MathSciNet  Google Scholar 

  19. S. Samardjiska, Y. Chen, and D. Gligoroski, “Construction of multivariate quadratic quasigroups (MQQs) in arbitrary Galois fields,” in: 2011 7th Int. Conf. on Information Assurance and Security (IAS) (2011), pp. 314–319.

  20. S. Samardjiska, S. Markovski, and D. Gligoroski, “Multivariate quasigroups defined by t-functions,” in: Proc. of SCC2010 — The Int. Conf. on Symbolic Computation and Cryptography (2010), pp. 117–127.

  21. C. Wolf and B. Preneel, Taxonomy of Public Key Schemes Based on the Problem of Multivariate Quadratic Equations, Cryptology ePrint Archive, Report 2005/077 (2005), https://eprint.iacr.org/2005/077.

  22. Y. Zhang and H. Zhang, “An algorithm for judging and generating bilinear multivariate quadratic quasigroups,” Appl. Math. Inf. Sci., 7, No. 9, 2071–2076 (2013).

    Article  MathSciNet  Google Scholar 

  23. Y. Zhang and H. Zhang, “An algorithm for judging and generating multivariate quadratic quasigroups over Galois fields,” Springerplus, 5, No. 1, 1845 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Galatenko.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 23, No. 2, pp. 57–73, 2020.

To the memory of Victor Timofeevich Markov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galatenko, A.V., Nosov, V.A. & Pankratiev, A.E. Generation of Multivariate Quadratic Quasigroups by Proper Families of Boolean Functions. J Math Sci 262, 630–641 (2022). https://doi.org/10.1007/s10958-022-05843-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-05843-7

Navigation