Skip to main content
Log in

Investigation of Contact between Elastic Bodies One of Which has a Thin Coating Connected with the Body through a Nonlinear Winkler Layer by the Domain Decomposition Methods

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider the problem of contact interaction between two elastic bodies one of which has a coating in the form of a thin Timoshenko-type shell connected with the body through a nonlinear Winkler layer. We present a weak formulation of this problem in the form of a nonlinear variational equation. We propose a class of iterative domain decomposition methods that reduce the solution of this equation to the solution, in each iteration, of independent linear variational equations corresponding to problems of elasticity for massive bodies and a problem of the Timoshenko theory of shells for the coating with Robin boundary conditions imposed on the contact boundaries. The conditions of weak convergence of these methods are established. We analyze the numerical efficiency of the obtained algorithms with the use of finite-element approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Aleksandrov and S. M. Mkhitaryan, Contact Problems for Bodies with Thin Coatings and Layers [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  2. V. M. Aleksandrov and D. A. Pozharskii, “Three-dimensional contact problems for an elastic wedge with coating,” Prikl. Mat. Mekh., 72, No. 1, 103–109 (2008).

    MathSciNet  Google Scholar 

  3. V. M. Aleksandrov and D. A. Pozharskii, “Three-dimensional contact problems with regard for friction and nonlinear roughness,” Prikl. Mat. Mekh., 68, No. 3, 516–527 (2004).

    MathSciNet  Google Scholar 

  4. M. V. Blokh and A. V. Orobinskii, “Modification of the finite-element method to solve two-dimensional elastic and plastic contact problems,” Probl. Prochn., No. 5, 24–27 (1983); English translation: Strength Mater., 15, No. 5, 613–620 (1983).

  5. L. I. Vynnytska, Mathematical Modeling of the Mechanics of Deformation of Elastic Bodies with Thin Soft Inclusions [in Ukrainian], Candidate-Degree Thesis (Physics and Mathematics), Lviv (2009).

    Google Scholar 

  6. L. Vynnytska and Ya. Savula, “Stress-strain state of an elastic body with thin inclusion,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 7, 21–29 (2008).

    Google Scholar 

  7. A. Ya. Grigorenko, I. I. Dyyak, S. I. Matysyak, and I. I. Prokopyshyn, “Domain decomposition methods applied to solve frictionless- contact problems for multilayer elastic bodies,” Prikl. Mekh., 46, No. 4, 25–37 (2010); English translation: Int. Appl. Mech., 46, No. 4, 388–399 (2010).

  8. I. I. Dyyak and I. I. Prokopyshyn, “Convergence of the Neumann parallel scheme of the domain decomposition method for problems of frictionless contact between several elastic bodies,” Mat. Met. Fiz.-Mekh. Polya, 52, No. 3, 78–89 (2009); English translation: J. Math. Sci., 171, No. 4, 516–533 (2010).

  9. G. Duvaut and J.-L. Lions, Les Inéquations en Mécanique et en Physique, Dunod Gauthier-Villars, Paris (1972).

    MATH  Google Scholar 

  10. V. I. Zaitsev and V. M. Shchavelin, “A method for the solution of contact problems with regard for the actual properties of the rough surfaces of interacting bodies,” Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 1, 88–94 (1989).

    Google Scholar 

  11. E. V. Kovalenko, “Contact problems for bodies with coatings,” in: I. I. Vorovich and V. M. Aleksandrov (editors), Mechanics of Contact Interactions [in Russian], Fizmatlit, Moscow (2001), pp. 459–475.

    Google Scholar 

  12. A. S. Kravchuk, “Nonlocal contact of rough bodies over an elliptic domain,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 42– 52 (2005).

  13. A. S. Kravchuk, “Statement of the problem of contact between several deformed bodies as a problem of nonlinear programming,” Prikl. Mat. Mekh., 42, No. 3, 467–474 (1978).

    Google Scholar 

  14. V. I. Kuz’menko, “On the variational approach in the theory of contact problems for nonlinearly elastic layered bodies,” Prikl. Mat. Mekh., 43, No. 5, 893–901 (1979).

  15. J.-L. Lions, Quelques Méthodes de Résolution des Problèms aux Limites non Linéares, Dunod Gauthier-Villars, Paris (1969).

    MATH  Google Scholar 

  16. R. M. Martynyak, I. A. Prokopyshyn, and I. I. Prokopyshyn, “Contact of elastic bodies with nonlinear Winkler surface layers,” Mat. Met. Fiz.-Mekh. Polya, 56, No. 3, 43–56 (2013); English translation: J. Math. Sci., 205, No. 4, 535–553 (2015).

  17. R. M. Martinyak and R. M. Shvets', “A mathematical model of mechanical contact of bodies across a thin inhomogeneous layer,” Mat. Met. Fiz.-Mekh. Polya, 40, No. 2, 107–109 (1997); English translation: J. Math. Sci., 90, No. 2, 2000–2002 (1998).

  18. R. M. Martynyak and R. M. Shvets', “Conditions of thermal contact of bodies through thin interlayers inhomogeneous in thickness,” Dop. Nats. Akad. Nauk Ukr., No. 9, 74–76 (1996).

    MATH  Google Scholar 

  19. S. M. Mkhitaryan, A. L. Shekyan, and L. A. Shekyan, “Indentation of a round punch into a rough elastic half-space,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 5, 90–98 (2009); English translation: Mech. Solids, 44, No. 5, 729–736 (2009).

  20. B. L. Pelekh, Generalized Theory of Shells [in Russian], Vyshcha Shkola, Lviv (1978).

    MATH  Google Scholar 

  21. B. L. Pelekh, A. V. Maksimuk, and I. M. Korovaichuk, Contact Problems for Layered Elements of Structures and Bodies with Coatings [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  22. A. N. Podgornyi, P. P. Gontarovskii, B. N. Kirkach, Yu. I. Matyukhin, and G. L. Khavin, Problems of Contact Interaction of Structural Elements [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  23. I. A. Prokopishyn and D. G. Khlebnikov, “Equivalent variational statements of unilateral contact problems for elastic bodies in the presence of a nonlinear surface layer,” in: Abstracts of the Republican Sci.-Tech. Conf. on the Efficient Numerical Methods for the Solution of Boundary-Value Problems of Mechanics of Deformable Solids: [in Russian], KhISI, Kharkov (1989), pp. 83–85.

  24. I. I. Prokopyshyn, “Domain decomposition schemes based on the penalty method for the problems of perfect contact of elastic bodies,” Mat. Met. Fiz.-Mekh. Polya, 57, No. 1, 41–56 (2014); English translation: J. Math. Sci., 212, No. 1, 46–66 (2016).

  25. I. Prokopyshyn, “Contact interaction of elastic bodies one of which has a coating connected with the base through a Winkler layer,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 23, 144–160 (2016).

    Google Scholar 

  26. I. Prokopyshyn, “Domain decomposition methods for a problem of static equilibrium of a system of elastic bodies connected through thin nonlinear layers,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 21, 173–185 (2015).

    Google Scholar 

  27. I. Prokopyshyn, “Domain decomposition methods for problems of unilateral contact of nonlinearly elastic bodies,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 15, 75–87 (2012).

    Google Scholar 

  28. I. Prokopyshyn, “Parallel schemes of the domain decomposition method for contact problems of the theory of frictionless elasticity,” Visn. Lviv. Univ., Ser. Prykl. Mat. Informat., Issue 14, 123–133 (2008).

    MATH  Google Scholar 

  29. I. I. Prokopyshyn, I. I. Dyyak, and R. M. Martynyak, “Numerical analysis of the problems of contact of three elastic bodies by the domain decomposition methods,” Fiz.-Khim. Mekh. Mater., 49, No. 1, 46–55 (2013); English translation: Mater. Sci., 49, No. 1, 45–58 (2013).

  30. Ya. G. Savula, I. I. Dyyak, and A. V. Dubovik, “Use of a combination model to calculate the stress-strain state of three-dimensional structures,” Prikl. Mekh., 25, No. 9, 62–67 (1989); English translation: Int. Appl. Mech., 25, No. 9, 904–909 (1989).

  31. A. O. Styahar, Ya. H. Savula, and I. I. Dyyak, “Numerical analysis of the stress-strain state of a body with thin inclusion by the domain decomposition method,” Mat. Met. Fiz.-Mekh. Polya, 57, No. 3, 119–131 (2014); English translation: J. Math. Sci., 217, No. 3, 283–298 (2016).

  32. H. T. Sulym, Fundamentals of the Mathematical Theory of Thermoelastic Equilibrium of Deformable Solids with Thin Inclusions [in Ukrainian], NTSh Research and Publishing Center, Lviv (2007).

    Google Scholar 

  33. P. Avery and C. Farhat, “The FETI family of domain decomposition methods for inequality-constrained quadratic programming: Application to contact problems with conforming and nonconforming interfaces,” Comput. Meth. Appl. Mech. Eng., 198, No. 21–26, 1673–1683 (2009).

    Article  MathSciNet  Google Scholar 

  34. Z. Dostál, T. Kozubek, V. Vondrák, T. Brzobohatý, and A. Markopoulos, “Scalable TFETI algorithm for the solution of multibody contact problems of elasticity,” Int. J. Numer. Meth. Eng., 82, No. 11, 1384–1405 (2010).

    Article  MathSciNet  Google Scholar 

  35. I. I. Dyyak, I. I. Prokopyshyn, and I. A. Prokopyshyn, “Convergence of penalty Robin–Robin domain decomposition methods for unilateral multibody contact problems of elasticity” (2015); http://arxiv.org/pdf/1208.6478.pdf

    MATH  Google Scholar 

  36. I. I. Dyyak and Ya. H. Savula, “D-adaptive mathematical model of solid body with thin coating,” Mat. Stud., 7, No. 1, 103–109 (1997).

  37. I. Dyyak, Ya. Savula, and A. Styahar, “Numerical investigation of a plain strain state for a body with thin cover using domain decomposition,” Zh. Obchysl. Prykl. Mat., No. 3 (109), 23–33 (2012).

  38. J. Haslinger, R. Kučera, and T. Sassi, “A domain decomposition algorithm for contact problems: Analysis and implementation,” Math. Model. Nat. Phenom., 4, No. 1, 123–146 (2009).

    Article  MathSciNet  Google Scholar 

  39. N. Kikuchi and J. T. Oden, Contact Problem in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia (1988).

    Book  Google Scholar 

  40. J. Koko, “Uzawa block relaxation domain decomposition method for a two-body frictionless contact problem,” Appl. Math. Lett., 22, 1534–1538 (2009).

    Article  MathSciNet  Google Scholar 

  41. I. Makar, Ya. Savula, and A. Styahar, “Numerical analysis of a multiscale model of the elastic body with the thin cover,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 15, 49–55 (2012).

    Google Scholar 

  42. Ia. Pasternak and H. Sulym, “Stress state of solids containing thin elastic crooked inclusions,” J. Eng. Math., 78, No. 1, 167–180 (2013).

    Article  MathSciNet  Google Scholar 

  43. I. I. Prokopyshyn, I. I. Dyyak, R. M. Martynyak, and I. A. Prokopyshyn, “Domain decomposition methods for problems of unilateral contact between elastic bodies with nonlinear Winkler covers,” Lect. Notes Comput. Sci. Eng., 98, 739–748 (2014).

    Article  MathSciNet  Google Scholar 

  44. I. I. Prokopyshyn, I. I. Dyyak, R. M. Martynyak, and I. A. Prokopyshyn, “Penalty Robin–Robin domain decomposition schemes for contact problems of nonlinear elasticity,” Lect. Notes Comput. Sci. Eng., 91, 647–654 (2013).

  45. K. Riederer, C. Duenser, and G. Beer, “Simulation of the linear inclusions with the BEM,” Eng. Anal. Bound. Elem., 33, No. 7, 959–965 (2009).

    Article  MathSciNet  Google Scholar 

  46. Ya. H. Savula, I. I. Dyyak, and V. V. Krevs, “Heterogeneous mathematical models in numerical analysis of structures,” Comput. Math. Appl., 42, No. 8–9, 1201–1216 (2001).

    Article  MathSciNet  Google Scholar 

  47. A. Styahar, “Numerical analysis of the Girkmann problem with FEM/BEM coupling using domain decomposition,” Zh. Obchysl. Prykl. Mat., No. 2 (116), 141–151 (2014).

    Google Scholar 

  48. A. Styahar and Ya. Savula, “On the convergence of domain decomposition algorithm for the body with thin inclusion,” Acta Mech. Autom., 9, No. 1, 27–32 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to І. І. Prokopyshyn.

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 62, No. 1, pp. 92–111, January–March, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokopyshyn, І.І., Styahar, А.О. Investigation of Contact between Elastic Bodies One of Which has a Thin Coating Connected with the Body through a Nonlinear Winkler Layer by the Domain Decomposition Methods. J Math Sci 258, 477–506 (2021). https://doi.org/10.1007/s10958-021-05562-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05562-5

Keywords

Navigation