Skip to main content
Log in

Determining of Coefficients and the Classical Solvability of a Nonlocal Boundary-Value Problem for the Benney–Luke Integro-Differential Equation with Degenerate Kernel

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Using the Fourier method of separation of variables, we examine the classical solvability and construct solutions of a nonlocal inverse boundary-value problem for the fourth-order Benney–Luke integro-differential equation with degenerate kernel. We prove the criterion of the unique solvability of the inverse boundary-value problem and examine the stability of solutions with respect to the recovery function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Akhtyamov and A. P. Ayupova, “On the solution of the problem of diagnosing small cavity defects in a rod,” Zh. Srednevolzh. Mat. Obshch., 12, No. 3, 37–42 (2010).

    MATH  Google Scholar 

  2. D. Amanov and M. B. Murzambetov, “Boundary-value problem for a fourth-order equation with a lower term,” Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, No. 1, 3–10 (2013).

    Article  Google Scholar 

  3. A. D. Baev, S. A. Shabrov, and Mon Mean, “On the uniqueness of the solution of a mathematical model of forced vibrations of a string with singularities,” Vestn. Voronezh. Univ. Ser. Fiz. Mat., No. 1, 50–55 (2014).

  4. D. J. Benney and J. C. Luke, “Interactions of permanent waves of finite amplitude,” J. Math. Phys., 43, 309–313 (1964).

    Article  MathSciNet  Google Scholar 

  5. E. A. Buryachenko, “On the dimension of the kernel of the Dirichlet problem for fourth-order equations,” Differ. Uravn., 51, No. 4, 472–480 (2015).

    MathSciNet  Google Scholar 

  6. S. V. Kirichenko, “On a nonlocal problem for a fourth-order equation with a dominant mixed derivative,” Vestn. Samar. Univ. Estestvennonauch. Ser., No. 2, 26–31 (2017).

    MATH  Google Scholar 

  7. I. G. Mamedov, “Fundamental solution of the initial-boundary-value problem for a fourth-order pseudoparabolic equation with nonsmooth coefficients,” Vladikavkaz. Mat. Zh., 12, No. 1, 17–32 (2010).

    MathSciNet  MATH  Google Scholar 

  8. R. Pirov, “On a method of studying the solution of a system of partial differential equations arising in three-dimensional field theory,” Vestn. Voronezh. Univ. Ser. Fiz. Mat., No. 4, 175–180 (2015).

    MATH  Google Scholar 

  9. Zh. Sh. Safarov, “Estimates of the stability of solutions of some inverse problems for integrodifferential equations,” Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, No. 3, 75–82 (2014).

    Article  Google Scholar 

  10. S. A. Shabrov, “Estimates of the influence function of a fourth-order mathematical model,” Vestn. Voronezh. Univ. Ser. Fiz. Mat., No. 2, 168–179 (2015).

    MATH  Google Scholar 

  11. M. M. Smirnov, Fourth-Order Model Mixed Equations [in Russian], Leningrad. Univ., Leningrad (1972).

    Google Scholar 

  12. Yu. G. Smirnov and A. A. Tsupak, “On the Fredholm property of the equation of electric field in the vector diffraction problem on a bulk partially shielded body,” Differ. Uravn., 52, No. 9, 1242–1251 (2016).

    Google Scholar 

  13. M. V. Turbin, “Study of the initial-boundary-value problem for the Herschel–Bulkley fluid motion model,” Vestn. Voronezh. Univ. Ser. Fiz. Mat., No. 2, 246–257 (2013).

    Google Scholar 

  14. G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York (1974).

    MATH  Google Scholar 

  15. T. K. Yuldashev, “Mixed problem for a fourth-order nonlinear differential equation with a small parameter with a parabolic operator,” Zh. Vychisl. Mat. Mat. Fiz., 51, No. 9, 1703–1711 (2011).

    MathSciNet  MATH  Google Scholar 

  16. T. K. Yuldashev, “On a fourth-order mixed differential equation,” Izv. Inst. Mat. Inform. Udmurt. Univ., No. 1 (47), 119–128 (2016).

  17. T. K. Yuldashev, “Inverse problem for a third-order nonlinear integro-differential equation,” Vestn. Samar. Univ. Estestvennonauch. Ser., No. 1, 58–66 (2013).

    MATH  Google Scholar 

  18. T. K. Yuldashev, “Inverse problem for a nonlinear integro-differential equation with a higherdegree hyperbolic operator,” Vestn. Yuzhno-Ural. Univ. Ser. Mat. Mekh. Fiz., 5, No. 1, 69–75 (2013).

    MathSciNet  MATH  Google Scholar 

  19. T. K. Yuldashev, “Inverse problem for a third-order Fredholm integro-differential equation with degenerate kernel,” Vladikavkaz. Mat. Zh., 18, No. 2, 76–85 (2016).

    MathSciNet  MATH  Google Scholar 

  20. T. K. Yuldashev and A. I. Seredkina, “Inverse problem for higher-order quasilinear partial integrodifferential equations,” Vestn. Samar. Univ. Ser. Fiz.-Mat. Nauki, 32, No. 3, 46–55 (2013).

    MATH  Google Scholar 

  21. S. K. Zaripov, “Construction of an analog of the Fredholm theorem for a class of first-order model integro-differential equations with a singular point in the kernel,” Vestn. Tomsk. Univ. Mat. Mekh., No. 46, 24–36 (2017).

    Google Scholar 

  22. S. K. Zaripov, “Construction of an analog of the Fredholm theorem for a class of first-order model integro-differential equations with a logarithmic singularity in the kernel,” Vestn. Samar. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 21, No. 2, 236–248 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Yuldashev.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 156, Mathematical Analysis, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuldashev, T.K. Determining of Coefficients and the Classical Solvability of a Nonlocal Boundary-Value Problem for the Benney–Luke Integro-Differential Equation with Degenerate Kernel. J Math Sci 254, 793–807 (2021). https://doi.org/10.1007/s10958-021-05341-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05341-2

Keywords and phrases

AMS Subject Classification

Navigation