Skip to main content
Log in

Orbits of Vectors in some Representations. I

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Let Φ be a root system of type E6, E7, or E8. Let K be a field of characteristic different from 2. Let δ be the maximal root of Φ and Φ0 = {α ∈ Φ; δα}. The orbits of the group Gsc0, K) acting on the set 〈eα; ∠(α, δ) = π/3〉 are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Borel, “Properties and linear representations of Chevalley groups,” in: Seminar on Algebraic Groups [in Russian], Mir, Moscow (1973), pp. 9–59.

  2. N. Bourbaki, Lie Groups and Algebras. Chaps. IV–VI [in Russian], Mir, Moscow (1972).

  3. N. Bourbaki, Lie Groups and Algebras. Chaps. VII–VIII [in Russian], Mir, Moscow (1978).

  4. M. Aschbacher, “The 27-dimensional module for E6. I,” Invent. Math., 89, No. 1, 159–195 (1987).

    Article  MathSciNet  Google Scholar 

  5. M. Aschbacher, “The 27-dimensional module for E6. II,” J. London Math. Soc., 37, 275– 293 (1988).

    Article  MathSciNet  Google Scholar 

  6. M. Aschbacher, “The 27-dimensional module for E6. III,” Trans. Amer. Math. Soc., 321, 45–84 (1990).

    MathSciNet  MATH  Google Scholar 

  7. M. Aschbacher, “The 27-dimensional module for E6. IV,” J. Algebra, 131, 23–39 (1990).

    Article  MathSciNet  Google Scholar 

  8. M. Aschbacher, “Some multilinear forms with large isometry groups,” Geom. Dedicata, 25, No. 1–3, 417–465 (1988).

    MathSciNet  MATH  Google Scholar 

  9. M. Aschbacher, “The geometry of trilinear forms,” in: Finite Geometries, Buildings and Related topics, Oxford Univ. Press (1990), pp. 75–84.

  10. B. N. Cooperstein, “The fifty-six-dimensional module for E7. I. A four form for E7,” J. Algebra, 173, No. 2, 361–389 (1995).

    Article  MathSciNet  Google Scholar 

  11. J. Humphreys, Linear Algebraic Groups [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  12. J. Humphreys, Introduction to the Theory of Lie Algebras and Their Representations [in Russian], MCCME, Moscow (2003).

    Google Scholar 

  13. S. Krutelevich, “Jordan algebras, exceptional groups, and Bhargava composition,” J. Algebra, 314, No. 2, 924–977 (2007).

    Article  MathSciNet  Google Scholar 

  14. A. Yu. Luzgarev and I. M. Pevzner, “Private life of GL(5,ℤ),” Zap. Nauchn. Semin. POMI, 305, 153–163 (2003).

    Google Scholar 

  15. O. T. O’Meara, “Lectures on linear groups,” in: Automorphisms of Classical Groups [in Russian], Mir, Moscow (1976), pp. 57–167.

    Google Scholar 

  16. I. M. Pevzner, “Geometry of root elements in groups of type E6,” Algebra Analiz, 23, No. 3, 261–309 (2011).

    Google Scholar 

  17. I. M. Pevzner, “Width of groups of type E6 with respect to root elements. I,”Algebra Analiz, 23, No. 5, 155–198 (2011).

    Google Scholar 

  18. I. M. Pevzner, “Width of groups of type E6 with respect to root elements. II,” Zap. Nauchn. Semin. POMI, 386, 242–264 (2011).

    Google Scholar 

  19. I. M. Pevzner, “The width of the group GL(6,K) with respect to a set of quasiroot elements,” Zap. Nauchn. Semin. POMI, 423, 183–204 (2014).

    Google Scholar 

  20. I. M. Pevzner, “Width of extraspecial unipotent radical with respect to root elements,” Zap. Nauchn. Semin. POMI, 435, 168–177 (2015).

    Google Scholar 

  21. I.M. Pevzner, “The existence of root subgroup translated by a given element into its opposite,” Zap. Nauchn. Sem. POMI, 460, 190–202 (2017).

    Google Scholar 

  22. O. T. O’Meara, Lectures on Symplectic Groups [in Russian], Mir, Moscow (1979).

  23. T. A. Springer, Linear algebraic groups, Birkhäuser Boston Inc., Boston (1998).

    Book  Google Scholar 

  24. T. A. Springer, “Linear algebraic groups,” in: Algebraic Geometry 4. Advances in Science and Technique [in Russian], 55, VINITI, Moscow (1989), pp. 5–136.

    Google Scholar 

  25. R. Steinberg, Lectures on Chevalley Groups [in Russian], Mir, Moscow (1975).

  26. N. A. Vavilov, “A third look at weight diagrams,” Rend. Sem. Mat. Univ. Padova, 204, 1–45 (2000).

    MathSciNet  MATH  Google Scholar 

  27. N. A. Vavilov and A. Yu.‘Luzgarev, “Normalizer of the Chevalley group of type E7,” St. Petersburg Math. J., 27, No. 6, 899–921 (2016).

  28. N. A. Vavilov, A. Yu. Luzgarev, and I. M. Pevzner, “The Chevalley group of type E6 in the 27-dimensional representation,” Zap. Nauchn. Semin. POMI, 338, 5–68 (2006).

    MATH  Google Scholar 

  29. N. A. Vavilov and I. M. Pevzner, “Triples of long root subgroups,” Zap. Nauchn. Semin. POMI, 343, 54–83 (2007).

    MathSciNet  Google Scholar 

  30. N. A. Vavilov and E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations,” Acta Applicandae Math. 45, 73–115 (1996).

    Article  MathSciNet  Google Scholar 

  31. N. A. Vavilov and A. A. Semenov, “Long root tori in Chevalley groups,” Algebra Analiz, 24, No. 3, 22–83 (2012).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Pevzner.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 484, 2019, pp. 149–164.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pevzner, I.M. Orbits of Vectors in some Representations. I. J Math Sci 252, 849–859 (2021). https://doi.org/10.1007/s10958-021-05205-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05205-9

Navigation