Skip to main content

Advertisement

Log in

Splitting Type Variational Problems with Linear Growth Conditions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Regularity properties of solutions to variational problems are established for a broad class of strictly convex splitting type energy densities of the principal form f : ℝ2 → ℝ, f1, ξ2) = f11) + f22), with linear growth. We show that, regardless of the

corresponding property of f2, the assumption (t ∈ ℝ)

$$ {c}_1{\left(1+\left|t\right|\right)}^{-{\upmu}_1}\le {f}_1^{\hbox{'}\hbox{'}}(t)\le {c}_2,\kern1em 1<{\upmu}_1<2, $$

is sufficient to obtain higher integrability of ∂1u for any finite exponent. We also include a series of variants of our main theorem. In the case f : ℝn → ℝ, similar results hold with the obvious changes in notation. Bibliography: 30 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bildhauer and M. Fuchs, “On a class of variational integrals with linear growth satisfying the condition of μ-ellipticity,” Rend. Mat. Appl. 22, 249–274 (2002).

    MathSciNet  MATH  Google Scholar 

  2. M. Bildhauer, “Two dimensional variational problems with linear growth,” Manuscr. Math. 110, 325–342 (2003).

    Article  MathSciNet  Google Scholar 

  3. E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel etc. (1984).

    Book  Google Scholar 

  4. M. Giaquinta, G. Modica, and J. Soucěk, Cartesian Currents in the Calculus of Variations I. Cartseian Currents, Springer, Berlin etc. (1998).

    MATH  Google Scholar 

  5. M. Giaquinta, G. Modica, and J. Soucěk, Cartesian Currents in the Calculus of Variations II. Variational Integrals, Springer, Berlin etc. (1998).

    Book  Google Scholar 

  6. L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford (2000).

    MATH  Google Scholar 

  7. M. Bildhauer, Convex Variational Problems: Linear , Nearly Linear and Anisotropic Growth Conditions, Springer, Berlin etc. (2003).

    Book  Google Scholar 

  8. M. Giaquinta, G. Modica, and J. Souček, “Functionals with linear growth in the calculus of variations. I,” Commentat. Math. Univ. Carol. 20, No. 1, 143–156 (1979).

    MathSciNet  MATH  Google Scholar 

  9. M. Giaquinta, G. Modica, and J. Souček, Cartesian Currents in the Calculus of Variations II Springer, Berlin etc. (1998).

    Book  Google Scholar 

  10. G. Seregin, “Variational-difference schemes for problems of the mechanics of ideally elastoplastic media,” U.S.S.R. Comput. Math. Phys. 25, No. 1, 153–165 (1985).

    Article  MathSciNet  Google Scholar 

  11. G. Seregin, “Two-dimensional variational problems of the theory of plasticity,” Izv. Math. 60, No. 1, 179–216 (1996).

    Article  MathSciNet  Google Scholar 

  12. M. Bildhauer, “A priori gradient estimates for bounded generalized solutions of a class of variational problems with linear growth,” J. Convex Anal. 9, No. 1, 117–137 (2002).

    MathSciNet  MATH  Google Scholar 

  13. P. Marcellini and G. Papi, “Nonlinear elliptic systems with general growth,” J. Differ. Equations 221, No. 2, 412–443 (2006).

    Article  MathSciNet  Google Scholar 

  14. L. Beck and T. Schmidt, “On the Dirichlet problem for variational integrals in BV,” J. Reine Angew. Math. 674, 113–194 (2013).

    MathSciNet  MATH  Google Scholar 

  15. L. Beck, M. Bulíčcek, J. Málek, and E. Süli, “On the existence of integrable solutions to nonlinear elliptic systems and variational problems with linear growth,” Arch. Ration. Mech. Anal. 225, No. 2, 717–769 (2017).

    Article  MathSciNet  Google Scholar 

  16. M. Bulíček, J. Málek, and E. Süli, “Analysis and approximation of a strain-limiting nonlinear elastic model,” Math. Mech. Solids 20, No. 1, 92–118 (2015).

    Article  MathSciNet  Google Scholar 

  17. M. Bulíček, J. Málek, K. Rajagopal, and E. Süli, “On elastic solids with limiting small strain: modelling and analysis,” EMS Surv. Math. Sci. 1, No. 2, 283–332 (2014).

    Article  MathSciNet  Google Scholar 

  18. M. Bulíček, J. Málek, K. Rajagopal, and J. R. Walton, “Existence of solutions for the antiplane stress for a new class of ‘strain-limiting’ elastic bodies,” Calc. Var. Partial Differ. Equ. 54, No. 2, 2115–2147 (2015).

    Article  Google Scholar 

  19. M. Bildhauer and M. Fuchs, “On a class of variational problems with linear growth and radial symmetry,” Commentat. Math. Univ. Carol. [To appear]

  20. L. Beck, M. Bulíček, and E. Maringová, “Globally Lipschitz minimizers for variational problems with linear growth,” ESAIM, Control Optim. Calc. Var. 24, No. 4, 1395–1403 (2018).

    Article  MathSciNet  Google Scholar 

  21. M. Giaquinta, “Growth conditions and regularity, a counterexample,” Manuscr. Math. 59, 245–248 (1987).

    Article  MathSciNet  Google Scholar 

  22. P. Marcellini, “Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions,” Arch. Rat. Mech. Anal. 105, 267–284 (1989).

    Article  MathSciNet  Google Scholar 

  23. L. Esposito, F. Leonetti, and G. Mingione, “Higher integrability for minimizers of integral functionals with (p,q) growth,” J. Differ. Equations 157, No. 2, 414–438 (1999).

    Article  MathSciNet  Google Scholar 

  24. L. Beck and G. Mingione, “Optimal Lipschitz criteria and local estimates for non-uniformly elliptic problems,” Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 30, No. 2, 223–236 (2019).

    Article  MathSciNet  Google Scholar 

  25. N. Fusco and C. Sbordone, “Some remarks on the regularity of minima of anisotropic integrals,” Commun. Partial Differ. Equations 18, No. 1-2, 153–167 (1993).

    Article  MathSciNet  Google Scholar 

  26. D. Breit, “A note on splitting type variational problems with subquadratic growth,” Arch. Math. 94, No. 5, 467–476 (2010).

    Article  MathSciNet  Google Scholar 

  27. M. Bildhauer, M. Fuchs, and X. Zhong, “A regularity theory for scalar local minimizers of splitting type variational integrals,” Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 6, No. 3, 385–404 (2007).

    MathSciNet  MATH  Google Scholar 

  28. M. Bildhauer and M. Fuchs, “Variational problems of splitting-type with mixed linearsuperlinear growth conditons,” J. Math. Anal. Appl. https://doi.org/10.1016/j.jmaa.2020.124452

  29. M. Bildhauer, “A uniqueness theorem for the dual problem associated to a variational problem with linear growth,” J. Math. Sci., New York 115, No. 6, 2747–2752 (2003).

    Article  MathSciNet  Google Scholar 

  30. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin (1998).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bildhauer.

Additional information

Translated from Problemy Matematicheskogo Analiza 105, 2020, pp. 45-58.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bildhauer, M., Fuchs, M. Splitting Type Variational Problems with Linear Growth Conditions. J Math Sci 250, 232–249 (2020). https://doi.org/10.1007/s10958-020-05012-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-05012-8

Navigation