Skip to main content
Log in

The Best Approximation of Algebraic Numbers by Multidimensional Continued Fractions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The karyon-module (\( \mathcal{K}\mathrm{\mathcal{M}}\hbox{-} \)) algorithm for expanding an algebraic number α = (α1, . . . , αd) from ℝd in a multidimensional continued fraction, i.e., in a sequence of rational numbers

$$ \frac{P_a}{Q_a}=\left(\frac{P_1^a}{Q^a},\dots, \frac{P_d^a}{Q^a}\right),\kern1em a=1,2,3,\dots, $$

from ℚd with numerators \( {P}_1^a,\dots, {P}_d^a\in \mathrm{\mathbb{Z}} \) and a common denominator Qa = 1, 2, 3, . . . is proposed. The \( \mathcal{K}\mathrm{\mathcal{M}} \)-algorithm belongs to the class of tuned algorithms and is based on constructing localized Pisot units ζ > 1, for which the moduli of all the conjugates ζ(i) ≠ ζ are contained in the θ- neighborhood of the number ζ−1/d, where the parameter θ may take an arbitrary fixed value.

It is proved that given a real algebraic point α of degree deg(α) = d + 1, the \( \mathcal{K}\mathrm{\mathcal{M}} \)-algorithm provides its approximation such that

$$ \left|\alpha -\frac{P_a}{Q_a}\right|\le \frac{c}{Q_a^{1+\frac{1}{a}-\theta }} $$

for all a ≥ aα,θ, where the constants aα,θ > 0 and c = cα,θ > 0 are independent of a = 1, 2, 3, . . ., and the convergents \( \frac{P_a}{Q_a} \) are computed from a certain recurrence relation with constant coefficients, determined by the choice of the localized unit ζ. Bibliography: 19 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Zhuravlev, “The simplex-module algorithm for expansion of algebraic numbers in multidimensional continued fractions,” Zap. Nauchn. Semin. POMI, 449, 168–195 (2016).

    Google Scholar 

  2. A. Ya. Khinchin, Continued Fractions [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  3. I. M. Vinogradov, Elements of Number Theory [in Russian], fifth ed., Nauka, Moscow (1972).

    Google Scholar 

  4. V. G. Zhuravlev, “Differentiation of induced toric tilings and multidimensional approximation of algebraic numbers,” Zap. Nauchn. Semin. POMI, 445, 33–92 (2016).

    Google Scholar 

  5. V. G. Zhuravlev, “The simplex-karyon algorithm for expansion in multidimensional continued fractions,” Sovrem. Probl. Mat., 299, 1–20 (2017).

    MathSciNet  Google Scholar 

  6. V. Brun, “Algorithmes euclidiens pour trois et quatre nombres,” in: Treizième congrès des mathématiciens scandinaves (Helsinki, 18–23 aout, 1957), Mercators Tryckeri, Helsinki (1958), pp. 45–64.

  7. E. S. Selmer, “Continued fractions in several dimensions,” Nordisk Nat. Tidskr., 9, 37–43 (1961).

    MathSciNet  MATH  Google Scholar 

  8. A. Nogueira, “The three-dimensional Poincare continued fraction algorithm,” Isr. J. Math., 90, No. 1–3, 373–401 (1995).

    Article  MathSciNet  Google Scholar 

  9. F. Schweiger, Multidimensional Continued Fraction. Oxford Univ. Press, New York (2000).

    MATH  Google Scholar 

  10. V. Berthe and S. Labbe, “Factor complexity of S-adic words generated by the Arnoux–Rauzy–Poincaré algorithm,” Adv. Appl. Math., 63, 90–130 (2015).

    Article  MathSciNet  Google Scholar 

  11. P. Arnoux and S. Labbe, On some symmetric multidimensional continued fraction algorithms,” arXiv:1508.07814, August (2015).

  12. J. Cassaigne, Un algorithme de fractions continues de complexité linéaire, DynA3S meeting, LIAFA, Paris, October 12th, 2015.

  13. Z. I. Borevich and I. R. Shafarevich, Number Theory [in Russian], 2nd ed., Nauka, Moscow (1972).

    Google Scholar 

  14. V. G. Zhuravlev, “Localized Pisot matrices and joint approximations of algebraic numbers,” Zap. Nauchn. Semin. POMI, 458, 104–134 (2017).

    Google Scholar 

  15. V. G. Zhuravlev, “Exchanged toric developments and bounded remainder sets,” Zap. Nauchn. Semin. POMI, 392, 95–145 (2011).

    Google Scholar 

  16. E. S. Fedorov, The Elements of the Study of Figures [in Russian], Moscow (1953).

  17. G. F. Voronoi, Collected Works [in Russian], Vol. 2, Kiev (1952).

  18. V. G. Zhuravlev, “Unimodularity of induced toric tilings,” Zap. Nauchn. Semin. POMI, 469, 96–137 (2018).

    Google Scholar 

  19. J. W. S. Cassels, An Introduction to Diophantine Approximation [Russian translation], Izd. Inostr. Lit., Moscow (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Zhuravlev.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 479, 2019, pp. 52–84.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, V.G. The Best Approximation of Algebraic Numbers by Multidimensional Continued Fractions. J Math Sci 249, 32–53 (2020). https://doi.org/10.1007/s10958-020-04918-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04918-7

Navigation