Skip to main content
Log in

To the theory of mappings of the Sobolev class with the critical index

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

It is established that any homeomorphism f of the Sobolev class \( {W}_{\mathrm{loc}}^{1,1} \) with outer dilatation \( {K}_O\left(x,f\right)\in {L}_{\mathrm{loc}}^{n-1} \) is the so-called lower Q-homeomorphism with Q(x) = KO(x, f) and also a ring Q-homeomorphism with \( Q(x)={K}_O^{n-1}\left(x,f\right) \). This allows us to apply the theory of boundary behavior of ring and lower Q-homeomorphisms. In particular, we have found the conditions imposed on the outer dilatation KO(x, f) and the boundaries of domains under which any homeomorphism of the Sobolev class \( {W}_{\mathrm{loc}}^{1,1} \) admits continuous or homeomorphic extensions to the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Afanas’eva, V. I. Ryazanov, R. R. Salimov, “On mappings in the Orlicz–Sobolev classes on Riemannian manifolds,” J. Math. Sci., 181, No. 1, 1–17 (2012).

    Article  MathSciNet  Google Scholar 

  2. C. Andreian Cazacu and V. Stanciu, “BMO-mappings in the plane,” in: Topics in Analysis and Its Applications, Kluwer, Dordrecht, 2004, pp. 11–30.

  3. K. Astala, “A remark on quasiconformal mappings and BMO-functions,” Michigan Math. J., 80, 209–212 (1983).

    MathSciNet  MATH  Google Scholar 

  4. K. Astala and F. W. Gehring, “Injectivity, the BMO norm and the universal Teichm´’uller space,” J. Analyse Math., 46, 16–57 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Csörnyei, S. Hencl, and J. Maly, “Homeomorphisms in the Sobolev space W 1,n-1,” J. Reine Angew. Math., 644, 221–235 (2010).

    MathSciNet  MATH  Google Scholar 

  6. H. Federer, Geometric Measure Theory, Springer, Berlin, 1996.

    Book  MATH  Google Scholar 

  7. F. W. Gehring, Characteristic Properties of Quasidisks, Univ. de Montreal, Montreal, 1982.

  8. F. W. Gehring and O. Lehto, “On the total differentiability of functions of a complex variable,” Ann. Acad. Sci. Fenn. Ser. A1. Math., 272, 3–8 (1959).

  9. F. W. Gehring and O. Martio, “Quasiextremal distance domains and extension of quasiconformal mappings,” J. Anal. Math., 45, 181–206 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Gutlyanskii, V. Ryazanov, U. Srebro, and E. Yakubov, The Beltrami Equation: A Geometric Approach, Springer, New York, 2012.

  11. J. Heinonen, T. Kilpelainen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford, 1993.

  12. A. A. Ignat’ev and V. I. Ryazanov, “Finite mean iscillation in the theory of mappings,” Ukr. Math. Bull., 2, No. 3, 403–424 (2005).

  13. A. A. Ignat’ev and V. I. Ryazanov, “To the theory of boundary behavior of spatial mappings,” Ukr. Math. Bull., 3, No. 2, 189–201 (2006).

  14. T. Iwaniec and G. Martin, Geometrical Function Theory and Non-linear Analysis, Clarendon Press, Oxford, 2001.

  15. T. Iwaniec and V. Šverák, “On mappings with integrable dilatation,” Proc. Amer. Math. Soc., 118, 181–188 (1993).

  16. F. John and L. Nirenberg, “On functions of bounded mean oscillation,” Comm. Pure Appl. Math., 14, 415–426 (1961).

  17. P. W. Jones, “Extension theorems for BMO,” Indiana Univ. Math. J., 29, 41–66 (1980).

  18. D. Kovtonyuk and V. Ryazanov, “On the theory of boundaries of spatial domains,” Trudy IPMM NAN Ukr., 13, 110–120 (2006).

  19. D. A. Kovtonyuk and V. I. Ryazanov, “On the theory of lower Q-homeomorphisms,” Ukr. Math. Bull., 5, No. 2, 157–181 (2008).

  20. D. Kovtonyuk and V. Ryazanov, “On the boundary behavior of generalized quasi-isometries,” J. Anal. Math., 115, 103–119 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Kovtonyuk and V. Ryazanov, “On the theory of mappings with finite area distortion,” J. Anal. Math., 104, 291–306 (2008).

  22. D. Kovtonyuk, I. Petkov, and V. Ryazanov, “On the boundary behaviour of solutions to the Beltrami equations,” Complex Var. Ellipt. Equ., 58, No. 5, 647–663 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  23. D. A. Kovtonyuk, I. V. Petkov, V. I. Ryazanov, and R. R. Salimov, “The boundary behavior and the Dirichlet problem for Beltrami equations,” St.-Petersburg Math. J., 25, No. 4, 587–603 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  24. D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, and E. A. Sevost’yanov, “To the theory of Orlicz–Sobolev classes,” St.-Petersburg Math. J., 25, No. 6, 929–963 (2014).

  25. D. Kovtonyuk, V. Ryazanov, R. Salimov, and E. Sevost’yanov, “On mappings in the Orlicz–Sobolev classes,” Ann. Univ. Bucharest (Math. Ser.), 3 (LXI), 67–78 (2012).

  26. D. A. Kovtonyuk, R. R. Salimov, and E. A. Sevost’yanov, To the Theory of Mappings of Sobolev and Orlicz–Sobolev Classes [in Russian], edited by V.I. Ryazanov, Naukova Dumka, Kiev, 2013.

  27. K. Kuratowski, Topology, Academic Press, New York, 1968.

  28. O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York, 1973.

  29. T. V. Lomako, “On the extension of some generalizations of quasiconformal mappings to the boundary,” Ukr. Mat. Zh., 61, No. 10, 1329–1337 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Maly and O. Martio, “Lusin’s condition (N) and mappings of the class W 1,n,” J. Reine Angew. Math., 485, 19–36 (1995).

  31. D. Menchoff, “Sur les differencelles totales des fonctions univalentes,” Math. Ann., 105, 75–85 (1931).

  32. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer, New York, 2009.

  33. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “On Q-homeomorphisms,” Ann. Acad. Sci. Fenn. Ser. A1. Math., 30, 49–69 (2005).

  34. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “Q-homeomorphisms,” Contemp. Math., 364, 193–203 (2004).

  35. V. G. Maz’ya, S. L. Sobolev’s Spaces [in Russian], Leningrad State Univ., Leningrad, 1985.

  36. R. Nakki, “Boundary behavior of quasiconformal mappings in n-space,” Ann. Acad. Sci. Fenn. Ser. A1 Math., 484, 1–50 (1970).

  37. S. P. Ponomarev, “On the N-property of homeomorphisms of the class \( {W}_p^1 \),” Sibir. Mat. Zh., 28, No. 2, 140–148 (1987).

  38. T. Rado and P.V. Reichelderfer, Continuous Transformations in Analysis, Springer, Berlin, 1955.

  39. H. M. Reimann and T. Rychener, “Functions of bounded mean oscillation and quasiconformal mappings,” Comment. Math. Helv., 49, 260–276 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  40. Yu. G. Reshetnyak, Spatial Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk, 1982.

  41. V. I. Ryazanov and R. R. Salimov, “Weakly flat spaces and boundaries in the theory of mappings,” Ukr. Mat. Visn., 4, No. 2, 199–234 (2007).

    MathSciNet  Google Scholar 

  42. V. I. Ryazanov and E. A. Sevost’yanov, “Equicontinuous classes of ring Q-homeomorphisms,” Siberian Math. J., 48, No. 6, 1093–1105 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  43. V. Ryazanov, U. Srebro, and E. Yakubov, “Integral conditions in the mapping theory,” J. Math. Sci., 173, No. 4, 397–407 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  44. V. Ryazanov, U. Srebro, and E. Yakubov, “On ring solutions of Beltrami equation,” J. Anal. Math., 96, 117–150 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  45. S. Saks, Theory of the Integral, Dover, New York, 1964.

  46. J. Serrin, “On the differentiability of functions of several variables,” Arch. Rat. Mech. Anal., 7, 359–372 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  47. V. Tengvall, “Differentiability in the Sobolev space W 1,n-1,” Calc. Var. Part. Diff. Equa., 51, Nos. 1–2, 381–399 (2014).

  48. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Springer, Berlin, 1971.

    Book  MATH  Google Scholar 

  49. J. Väisälä, “On quasiconformal mappings in space,” Ann. Acad. Sci. Fenn. Ser. A1 Math., 298, 1–36 (1961).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena S. Afanas’eva.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 15, No. 2, pp. 154–176, January–March, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanas’eva, E.S., Ryazanov, V.I. & Salimov, R.R. To the theory of mappings of the Sobolev class with the critical index. J Math Sci 239, 1–16 (2019). https://doi.org/10.1007/s10958-019-04283-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04283-0

Keywords

Navigation