Skip to main content
Log in

Large Deviations for Level Sets of a Branching Brownian Motion and Gaussian Free Fields

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We study deviation probabilities for the number of high positioned particles in branching Brownian motion and confirm a conjecture of Derrida and Shi. We also solve the corresponding problem for the two-dimensional discrete Gaussian free field. Our method relies on an elementary inequality for inhomogeneous Galton–Watson processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Biggins, “The growth and spread of the general branching random walk,” Ann. Appl. Probab., 5, 1008–1024 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Biskup and O. Louidor, “On intermediate level sets of the two-dimensional discrete Gaussian free field” (2016) arXiv:1612.01424.

  3. E. Bolthausen, J.-D. Deuschel, and G. Giacomin, “Entropic repulsion and the maximum of the two-dimensional harmonic crystal,” Ann. Probab., 29, 1670–1692 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bovier, Gaussian Processes on Trees. From Spin Glasses to Branching Brownian Motion, Cambridge Univ. Press, Cambridge (2017).

  5. M. D. Bramson, “Maximal displacement of branching Brownian motion,” Comm. Pure Appl. Math., 31, 531–581 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. D. Bramson, “Convergence of solutions of the Kolmogorov equation to travelling waves,” Mem. Amer. Math. Soc., 44, No. 285, (1983).

  7. M. Bramson, J. Ding, and O. Zeitouni, “Convergence in law of the maximum of the two-dimensional discrete Gaussian free field,” Commun. Pure Appl. Math., 69, 62–123 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Chauvin and A. Rouault, “KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees,” Probab. Theory Related Fields, 80, 299–314 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  9. O. Daviaud, “Extremes of the discrete two-dimensional Gaussian free field,” Ann. Probab., 34, 962–986 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Derrida and Z. Shi, “Large deviations for the branching Brownian motion in presence of selection or coalescence,” J. Statist. Phys., 163, 1285–1311 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  11. R. A. Fisher, “The wave of advance of advantageous genes,” Ann. Human Genetics, 7, 355–369 (1937).

    MATH  Google Scholar 

  12. A. N. Kolmogorov, I. Petrovskii, and N. Piskunov, “Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,” Bull. Univ. Moscou Série internationale, Section A, Mathématiques et mécanique, 1, 1–25 (1937).

    Google Scholar 

  13. G. F. Lawler, Intersections of Random Walks, Birkhäuser, Boston (1991).

    Book  MATH  Google Scholar 

  14. H. P. McKean, “Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov,” Comm. Pure Appl. Math., 28, 323–331 (1975). Erratum: 29, 553–554.

  15. A. Rouault, “Large deviations and branching processes,” in: Proc. 9th International Summer School on Probability Theory and Mathematical Statistics (Sozopol, 1997), Pliska Studia Mathematica Bulgarica, 13, 15–38.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Aïdékon.

Additional information

Dedicated to the memory of Professor V. N. Sudakov

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 457, 2017, pp. 12–36.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aïdékon, E., Hu, Y. & Shi, Z. Large Deviations for Level Sets of a Branching Brownian Motion and Gaussian Free Fields. J Math Sci 238, 348–365 (2019). https://doi.org/10.1007/s10958-019-04243-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04243-8

Navigation