Skip to main content
Log in

Lie Superalgebras and Calogero–Moser–Sutherland Systems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We review recent results obtained at the intersection of the theory of quantum deformed Calogero–Moser–Sutherland systems and the theory of Lie superalgebras. We begin with a definition of admissible deformations of root systems of basic classical Lie superalgebras. For classical series, we prove the existence of Lax pairs. Connections between infinite-dimensional Calogero–Moser–Sutherland systems, deformed quantum CMS systems, and representation theory of Lie superalgebras are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Awata, “Hidden algebraic structure of the Calogero–Sutherland model, integral formula for Jack polynomial and their relativistic analog,” in: Calogero–Moser–Sutherland Models, CRMSer. Math. Phys., Springer-Verlag, New York (2000), pp. 23–35.

  2. F. Calogero, C. Marchioro, and O. Ragnisco, “Exact solution of the classical and quantal onedimensional many-body problems with the two-body potential,” Lett. Nuovo Cim., 13, No. 10, 383 (1975).

    Article  Google Scholar 

  3. A. P. Chalykh, M. V. Feigin, and A. P. Veselov, “New integrable deformations of the quantum Calogero–Moser problem,” Usp. Mat. Nauk, 51, No. 3, 573–574 (1996).

    MathSciNet  MATH  Google Scholar 

  4. O. A. Chalykh, M. V. Feigin, and A. P. Veselov, “Multidimensional Baker–Akhiezer functions and Huygens priciple,” Commun. Math. Phys., 206, No. 2, 533–566 (1999).

    Article  Google Scholar 

  5. C. Gruson and V. Serganova, “Cogomology of generalizes super Grassmannians and character formula for basic classical Lie superalgebras,” Proc. London Math. Soc., 101, No. 3, 852–892 (2010).

    Article  MathSciNet  Google Scholar 

  6. M. Kasatani, T. Miwa, A. N. Sergeev, and A. P. Veselov, “Coincident root loci and Jack and Macdonald polynomials for special values of the parameters,” Contemp. Math., 417, Am. Math. Soc., Providence, Rhode Island (2006), pp. 207–225.

  7. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford (1995).

    MATH  Google Scholar 

  8. M. Nazarov and E. Sklyanin, “Integrable hierarchy of the quantum Benjamin–Ono equation,” SIGMA, 9, 078 (2013); arXiv:1309.6464.

    MathSciNet  MATH  Google Scholar 

  9. M. A. Olshanetsky and A. M. Perelomov, “Quantum systems related to root systems and radial parts of the Laplace operators,” Funkts. Anal. Prilozh., 12, No. 2, 57–65 (1978).

    Google Scholar 

  10. V. Serganova, “On generalization of root systems,” Commun. Algebra, 24, No. 13, 4281–4299 (1996).

    Article  MathSciNet  Google Scholar 

  11. A. N. Sergeev, “Tensor algebra of the identity representation as a module over Lie superalgebra 𝔤𝔩(n,m) and q(n),” Mat. Sb. (N.S.), 123 (165), No. 3, 422–430 (1984).

    MathSciNet  Google Scholar 

  12. A. N. Sergeev, “Calogero operator and Lie superalgebras,” Teor. Mat. Fiz., 131, No. 3, 747–764 (2002).

    Article  MathSciNet  Google Scholar 

  13. A. Sergeev, “Projective Schur functions as bispherical functions on certain homogeneous superspaces,” in: The Orbit Method in Geometry and Physics, Progr. Math., 213, Birkhäuser Boston, Boston, MA (2003), pp. 421–443.

  14. A. N. Sergeev and A. P. Veselov, “Deformed quantum Calogero–Moser problems and Lie superalgebras,” Commun. Math. Phys., 245, No. 2, 249–278 (2004).

    Article  MathSciNet  Google Scholar 

  15. A. N. Sergeev and A. P. Veselov, “Generalized discriminants, deformed Calogero–Moser–Sutherland operators and super-Jack polynomals,” Adv. Math., 192, 341–375 (2005).

    Article  MathSciNet  Google Scholar 

  16. A. N. Sergeev and A. P. Veselov, “BC Calogero–Moser operator and super Jacobi polynomials,” Adv. Math., 222, No. 5, 1687–1726 (2009).

    Article  MathSciNet  Google Scholar 

  17. A. N. Sergeev and A. P. Veselov, “Deformed Macdonald–Ruijsenaars operators and super Macdonald polynomials,” Commun. Math. Phys., 228, 653–675 (2009).

    Article  MathSciNet  Google Scholar 

  18. A. N. Sergeev and A. P. Veselov, “Quantum Calogero–Moser systems: a view from infinity,” arXiv:0910.5463

  19. A. N. Sergeev and A. P. Veselov, “Euler characters and super Jacobi polynomials,” Adv. Math., 226, 4286–4315 (2011).

    Article  MathSciNet  Google Scholar 

  20. A. N. Sergeev and A. P. Veselov, “Grothendieck rings of basic classical Lie superalgebras,” Ann. Math., 173, 663–703 (2011).

    Article  MathSciNet  Google Scholar 

  21. A. N. Sergeev and A. P. Veselov, “Jack–Laurent symmetric functions,” Proc. London Math. Soc. (3), 111, 63–92 (2015).

    Article  MathSciNet  Google Scholar 

  22. A. N. Sergeev and A. P. Veselov, “Dunkl operators at infinity and Calogero–Moser systems,” Int. Math. Res. Not., 21, 10959–10986 (2015).

    Article  MathSciNet  Google Scholar 

  23. A. N. Sergeev and A. P. Veselov, “Jack–Laurent symmetric functions for special values of the parameters,” Glasgow Math. J., 58, No. 3, 599–616 (2016).

    Article  MathSciNet  Google Scholar 

  24. A. N. Sergeev and A. P. Veselov, “Symmetric Lie superalgebras and deformed quantum Calogero–Moser problem, Adv. Math., 304, 728–768 (2017).

    Article  MathSciNet  Google Scholar 

  25. B. S. Shastry and B. Sutherland, “Super Lax pairs and infinite symmetries in the 1/r 2 system,” Phys. Rev. Lett., 70, No. 26, 4029–4033 (1993).

    Article  MathSciNet  Google Scholar 

  26. R. Stanley, “Some combinatorial properties of Jack symmetric functions,” Adv. Math., 77, No. 1, 76–115 (1989).

    Article  MathSciNet  Google Scholar 

  27. H. Ujino, K. Hikami, and M. Wadati, “Integrability of the quantum Calogero–Moser model,” J. Phys. Soc. Jpn., 61, No. 10, 3425 (1992).

    Article  MathSciNet  Google Scholar 

  28. A. P. Veselov, “On generalization of the Calogero–Moser–Sutherland quantum problem and WDVV equation,” J. Math. Phys., 43, No. 11, 5675–5682 (2002).

    Article  MathSciNet  Google Scholar 

  29. M. Wadati, K. Hikami, and H. Ujino, “Integrability and algebraic structure of the quantum Calogero-Moser model,” Chaos Solitons Fractals, 3, No. 6, 627–636 (1993).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Sergeev.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 136, Proceedings of the Seminar on Algebra and Geometry of Samara University, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeev, A.N. Lie Superalgebras and Calogero–Moser–Sutherland Systems. J Math Sci 235, 756–787 (2018). https://doi.org/10.1007/s10958-018-4092-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-4092-6

Keywords and phrases

AMS Subject Classification

Navigation