Skip to main content
Log in

Equations of Boundary Layer for a Generalized Newtonian Medium Near a Critical Point

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We consider a model of flow past a body in a viscous continuous medium with a nonlinear rheologic law and study the problem of continuation of boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Prandtl, “Über Flüssigkeitsbewegungen bei sehr kleiner Reibund,” in: Verh. Int. Math. Kongr. Heidelberg, 1904, Teubner (1905), pp. 484–494.

  2. J. Leray, “Étude des diverses équation intégrales nonlinéares et de quelques problèmes que pose l’hydrodynamique,” J. Math. Pure Appl., 2, 1–82 (1933).

    MATH  Google Scholar 

  3. H. Schlichting and K. Gersten, Boundary-Layer Theory, Springer, Berlin (2000).

    Book  MATH  Google Scholar 

  4. R. Temam and X. Wang, “Remarks on the Prandtl equation for a permeable wall,” Z. Angew. Math. Mech., 80, No. 11-12, 835–843 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  5. W. E, “Boundary layer theory and the zero-viscosity limit of the Navier–Stokes equation,” Acta Math. Sin. (Engl. Ser.), 16, No. 2, 207–218 (2000).

  6. M. C. Lopes Filho, “Boundary layers and the vanishing viscosity limit for incompressible 2D flow,” in: Lectures on the Analysis of Nonlinear Partial Differential Equations, Pt. 1, Morningside Lect. Math., Vol. 1, International Press, Somerville, MA (2012), pp. 1–29.

  7. O. A. Oleinik and V. N. Samokhin, Mathematical Models in Boundary Layer Theory, Chapman & Hall/CRC, Boca Raton (1999).

    MATH  Google Scholar 

  8. M. S. Romanov, V. N. Samokhin, and G. A. Chechkin, “Rate of convergence of solutions of the Prandtl equations in rapidly oscillating magnetic field,” Dokl. Ross. Akad. Nauk, 426, No. 4, 450–456 (2009).

    MathSciNet  MATH  Google Scholar 

  9. S. V. Spiridonov, “A homogenization theorem for a stratified magnetic fluid with a micro-inhomogeneous magnetic field and a boundary condition,” Probl. Mat. Anal., 44, 133–143 (2010).

    Google Scholar 

  10. S. V. Spiridonov and G. A. Chechkin, “Percolation of the boundary layer in Newtonian flow through a perforated obstacle,” Probl. Mat. Anal., 45, 93–102 (2010).

    MATH  Google Scholar 

  11. A. Yu. Linkevich, S. V. Spiridonov, and G. A. Chechkin, “Boundary layer in a Newtonian flow past a rough surface and a perforated obstacle,” Ufimsk. Mat. Zh., 3, No. 3, 93–104 (2011).

    Google Scholar 

  12. M. S. Romanov, “Homogenization of boundary layer in pseudo-plastic fluid in the presence of rapidly oscillating external forces,” Tr. Semin. Petrovskogo, 28, 300–328 (2011).

    MathSciNet  MATH  Google Scholar 

  13. Y. Amirat, G. A. Chechkin, and M. S. Romanov, “On multiscale homogenization problems in boundary layer theory,” Z. Angew. Math. Phys., 63, 475–502 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Yu. Linkevich, T. S. Rat’yu, S. V. Spiridonov, and G. A. Chechkin, “Thin layer of non-Newtonian flow on a rough surface passing through a perforated obstacle,” Probl. Mat. Anal., 68, 173–182 (2013).

    Google Scholar 

  15. T. P. Chechkina, “A scalar hydrodynamic problem with nonperiodic concentrated massas on the surface,” Vestn. Nac. Yad. Univ. MIFI, 4, No. 1, 25–34 (2015).

    MathSciNet  Google Scholar 

  16. G. A. Chechkin and T. P. Chechkina, “Plane scalar analogue of a linear degenerate hydrodynamic problem with periodic microstructure on free surface,” Probl. Mat. Anal., 78, 201–213 (2015).

    MATH  Google Scholar 

  17. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon & Breach, New York (1969).

    MATH  Google Scholar 

  18. V. N. Samokhin, G. M. Fadeeva, and G. A. Chechkin, “Equations of boundary layer for a modified Navier–Stokes system,” Tr. Semin. Petrovskogo, 28, 329–361 (2010).

    Google Scholar 

  19. N. D. Vvedenskaya, “Solution of the equations of boundary layer in a neighborhood of a critical point,” Zh. Vychisl. Mat. Mat. Fiz., 7, 924–929 (1967).

    Google Scholar 

  20. Ph. Hartman, Ordinary Differential Equations, Wiley, New York (1964).

    MATH  Google Scholar 

  21. V. N. Samokhin, G. N. Fadeeva, and G. A. Chechkin, “Ladyzhenskaya’s modification of the Navier–Stokes equations and the theory of boundary layer,” Vestn. MGUP, No. 5, 127–143 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Samokhin.

Additional information

Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 31, pp. 158–176, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samokhin, V.N., Chechkin, G.A. Equations of Boundary Layer for a Generalized Newtonian Medium Near a Critical Point. J Math Sci 234, 485–496 (2018). https://doi.org/10.1007/s10958-018-4024-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-4024-5

Navigation