Skip to main content
Log in

On the Optimal Stabilization of an Integral Manifold

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

By the method of Lyapunov functions, we study the problem of optimal stabilization of an analytically defined integral manifold in the class of stochastic differential equations in the case where random perturbations belong to the class of processes with independent increments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Galiullin, Methods for the Solution of Inverse Problems of Dynamics [in Russian], Nauka, Moscow (1986).

  2. A. M. Lyapunov, General Problem of Stability of Motion [in Russian], Gostekhizdat, Moscow (1950).

    MATH  Google Scholar 

  3. N. G. Chetaev, Stability of Motion [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  4. I. G. Malkin, Theory of Stability of Motion [in Russian], Nauka, Moscow (1956).

    Google Scholar 

  5. V. I. Zubov, Stability of Motion [in Russian], Vysshaya Shkola, Moscow (1973).

    Google Scholar 

  6. V. M. Matrosov, “On the stability of sets of nonisolated equilibrium positions of the systems,” Tr. Kazan. Aviatsion. Inst., Issue 89, 20–32 (1965).

  7. T. Yoshizawa, Stability Theory by Liapunov’s Second Method, Mathematical Society of Japan, Tokyo (1966).

  8. A. M. Samoilenko, Elements of the Mathematical Theory of Multifrequency Oscillations. Invariant Tori [in Russian], Moscow, Nauka (1987).

  9. J. E. Bertram and P. E. Sarachik, “Stability of circuits with randomly time-varying parameters,” in: Proc. of the Internat. Symp. on Circuit and Information Theory (Los Angeles, California, June 16–18, 1959), IRE Transactions CT-6 (1959), pp. 260–270.

  10. I. Ya. Kats and N. N. Krasovskii, “Stability of systems with random parameters,” Prikl. Mat. Mekh., 27, Issue 5, 809–823 (1960).

  11. R. Z. Khas’minskii, Stability of Systems of Differential Equations with Random Perturbations of Their Parameters [in Russian], Nauka, Moscow (1969).

  12. A. M. Samoilenko and O. M. Stanzhytskyi, Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations, World Scientific, Singapore (2011).

    Book  MATH  Google Scholar 

  13. A. N. Stanzhitskii, “On the stability in probability for the invariant sets of systems with random perturbations,” Nelin. Kolyv., 1, No. 2, 138–142 (1998).

    MathSciNet  Google Scholar 

  14. O. M. Stanzhyts’kyi, “Investigation of invariant sets of Itô stochastic systems with the use of Lyapunov functions,” Ukr. Mat. Zh., 53, No. 2, 282–285 (2001); English translation : Ukr. Math. J., 53, No. 2, 323–327 (2001).

  15. A. S. Galiullin, Stability of Motion [in Russian], Nauka, Moscow (1973).

    MATH  Google Scholar 

  16. M. I. Tleubergenov, “On the stability of programmed motion in probability,” Izv. Min. Obraz. Nauk. Resp. Kazakhstan, Kazakhstan Nats. Akad. Nauk, No. 3, 47–53 (2002).

  17. V. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations [in Russian], Naukova Dumka, Kiev (1968).

    MATH  Google Scholar 

  18. G. K. Vasilina and M. I. Tleubergenov, “Solution of the problem of stochastic stability of an integral manifold by the second Lyapunov method,” Ukr. Mat. Zh., 68, No. 1, 14–27 (2016); English translation : Ukr. Math. J., 68, No. 1, 14–28 (2016).

  19. A. M. Letov, Dynamics of Flight and Control [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  20. N. N. Krasovskii, Problems of Stabilization of Controlled Motions. Addendum to I. G. Malkin’s Monograph, Theory of Stability of Motion [in Russian], Nauka, Moscow (1966).

  21. N. N. Krasovskii and É. A. Lidskii, “Analytic construction of regulators. I. II. III,” Avtomat. Telemekh., 22, No. 9, 1145–1150 (1961); 22, No. 10, 1273–1278 (1961); 22, No. 11, 1425–1431 (1961).

  22. A. M. Letov, “Analytic construction of regulators. I–V,” Avtomat. Telemekh., 21, No. 4, 436–441 (1960); 21, No. 5, 561–568 (1960); 21, No. 6, 661–665 (1960); 22, No. 4, 425-435 (1961); 23, No. 11, 1405–1413 (1962).

  23. R. Z. Khas’minskii, “Stability of stochastic differential equations with mode switching,” Probl. Pered. Inform., 48, Issue 3, 70–82 (2012).

    Google Scholar 

  24. M. B. Nevel’son and R. Z. Khas’minskii, “Stability and stabilization of stochastic differential equations,” in: Summer School on the Theory of Probability and Mathematical Statistics [in Russian], Kiev (1969), pp. 68–121.

  25. Y. A. Phillis, “Optimal stabilization of stochastic systems,” J. Math. Anal. Appl., 94, No. 2, 489–500 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  26. K. G. Valeev, O. L. Karelova, and V. I. Gorelov, Optimization of Linear Systems with Random Coefficients [in Russian], Izd. Ros. Univ. Druzhby Narodov, Moscow (1996).

  27. M. Yu. Rachkov, Optimal Control over Deterministic and Stochastic Systems [in Russia], Moskovskii Gos. Industrial’nyi Univ., Moscow (2005).

  28. M. I. Tleubergenov, “On the optimal stabilization of programmed motion,” in: Proc. of the Fifth Conf. of Young Scientists of the University of Friendship of Peoples, (Math., Fiz., Chem.,), Part I [in Russian], Moscow (1982), pp. 9-13, Deposited at VINITI No. 3814–82.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Vasilina.

Additional information

Translated from Neliniini Kolyvannya, Vol. 20, No. 1, pp. 53–65, January–March, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilina, G.K., Tleubergenov, M.I. On the Optimal Stabilization of an Integral Manifold. J Math Sci 229, 390–402 (2018). https://doi.org/10.1007/s10958-018-3684-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-3684-5

Navigation