Skip to main content
Log in

Cryptographic Algorithms on Groups and Algebras

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We analyze algorithms for open construction of a key on some noncommutative group. Algorithms of factorization and decomposition for associative algebras (of small dimension) are considered. A survey of applications (in particular, in cryptography) of so-called “hidden matrices” is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Agnarson, S. A. Amitsur, and J. C. Robson, “Recognition of matrix rings. II,” Israel J. Math., 96, 1–13 (1966).

    Article  MathSciNet  Google Scholar 

  2. A. P. Alferov, A. Y. Zubov, A. S. Kuzmin, and A. V. Cheremushkin, Foundations of Cryptography [in Russian], Gelios ARV, Moscow (2001).

    Google Scholar 

  3. I. N. Balaba and A. V. Mikhalev, “Isomorphisms of graded endomorphism rings of graded modules close to free ones,” J. Math. Sci., 156, No. 2, 209–218 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  4. I. N. Balaba and A. V. Mikhalev, “Anti-isomorphisms of graded endomorphism rings of graded modules close to free ones,” J. Math. Sci., 164, No. 2, 168–277 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  5. K. I. Beidar and A. V. Mikhalev, “Anti-isomorphisms of endomorphism rings of modules and Morita anti-equivalence,” Russ. Math. Surv., 50, No. 1, 191–192 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  6. K. I. Beidar and A. V. Mikhalev, “Anti-isomorphisms, induced by Morita anti-equivalences, of endomorphism rings of modules that are close to free,” J. Math. Sci., 85, No. 6, 2450–2453 (1997).

    Article  MathSciNet  Google Scholar 

  7. I. I. Bogdanov, “Hidden matrix semirings,” J. Math. Sci., 135, No. 5, 3276–3280 (2006).

    Article  MathSciNet  Google Scholar 

  8. M. L. Bolla, “Isomorphisms between endomorphism rings of progenerators,” J. Algebra, 87, 261–281 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. R. Bremmer, “How to compute the Wedderburn decomposition of a finite-dimensional associative algebra,” Groups, Complexity, Cryptology, 3, 47–66 (2011).

    MathSciNet  Google Scholar 

  10. V. P. Camillo, “Inducing lattice maps by semilinear isomorphisms,” Rocky Mountain J. Math., 14, 475–486 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. W. Chatters, “Representations of tiled matrix rings as full matrix rings,” Math. Proc. Cambridge Philos. Soc., 105, 67–72 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. W. Chatters, “Matrices, idealizers, and integer quaternions,” J. Algebra, 150, 45–56 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. W. Chatters, “Non-isomorphic rings with isomorphic matrix rings,” Proc. Edinburgh Math. Soc., 36, 339–348 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Trans. Inform. Theory, IT-22, No. 6, 644–654 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Eberly, “Decompositions of algebras over finite fields and number fields,” Comput. Complexity, 1, 183–210 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Eberly, “Decompositions of algebras over R and C,” Comput. Complexity, 1, 214–234 (1991).

    MathSciNet  Google Scholar 

  17. W. Eberly and M. Giesbrecht, “Efficient decomposition of associative algebras,” in: Proc. ISSAC ’96, ACM, New York (1996), pp. 170–178.

  18. W. Eberly and M. Giesbrecht, “Efficient decomposition of associative algebras over finite fields,” J. Symbol. Comput., 29, 441–458 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Eberly and M. Giesbrecht, “Efficient decomposition of separable algebras,” J. Symbol. Comput., 37, 35–81 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Friede and L. Ronyai, “Polynomial time solutions of some problems in computational algebra,” in: Proc. 17th Ann. ACM Symp. Theory Comp., ACM, New York (1985), pp. 153–162.

  21. P. R. Fuchs, “A characterization result for matrix rings,” Bull. Aust. Math. Soc., 43, 265–267 (1991).

    Article  MATH  Google Scholar 

  22. P. R. Fuchs, C. J. Maxson, and G. F. Pilz, “On rings for which homogeneous maps are linear,” Proc. Amer. Math. Soc., 112, 1–7 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. M. Glukhov, V. P. Elizarov, and A. A. Nechaev, Algebra, Vol. II (in Russian), Gelios ARV, Moscow (2003).

    Google Scholar 

  24. H. Imai and T. Matsumoto, “Algebraic methods for constructing asymmetric cryptosystems,” in: Proc. of the 3rd Int. Conf. on Algebraic Algorithms and Error-Correcting Codes, Lect. Notes Comput. Sci., Vol. 229, Springer, Berlin (1985), pp. 108–119.

  25. T. Y. Lam, Modules with Isomorphic Multiples and Rings with Isomorphic Matrix Rings. A Survey, L’Enseignement Math´ematique, No. 35, Kundig (1999).

  26. T. Y. Lam and A. Leroy, “Recognition and computations of matrix rings,” Israel J. Math., 96, 379–397 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  27. I. S. Levy, J. S. Robson, and T. Stafford, “Hidden matrices,” Proc. London Math. Soc. (2), 69, 277–308 (1994).

  28. R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley (1983).

  29. A. V. Mikhalev, “Isomorphisms of endomorphism rings of modules that are close to free,” Moscow Univ. Math. Bull., 44, No. 2, 28–38 (1989).

    MathSciNet  MATH  Google Scholar 

  30. A. V. Mikhalev, “Isomorphisms and antiisomorphisms of endomorphism rings of modules,” in: First Int. Tainan–Moscow Algebra Workshop, Walter de Gruyter, Berlin (1996), pp. 70–122.

  31. N. A. Moldovyan and D. N. Moldovyan, “A new hard problem over non-commutative finite groups for cryptographic protocols,” in: Computer Network Security, Proc. 5th Int. Conf. MMM-ACNS 2010, Lect. Notes Comput. Sci., Vol. 6258, Springer, Berlin (2010), pp. 183–194.

  32. A. A. Nechaev, “Finite rings with applications,” in: M. Hazewinkel, ed., Handbook of Algebra, Vol. 5, Elsevier (2008), pp. 213–320.

  33. J. von Neumann, Continuous Geometry, Princeton Univ. Press (1960).

  34. M. I. Novikov, Recognition of Supermatrices [in Russian], Course work for the 4th year of education, Faculty of Mechanics and Mathematics, Moscow State University (scientific adviser: Prof. A. V. Mikhalev), Moscow (2009).

  35. J. Patarin, L. Goubin, and N. Courtois, “\( {C}_{-+}^{\ast } \) and HM: Variations around two schemes of T. Matsumoto and H. Imai,” in: Advances in Cryptology — ASIACRYPT ’98, Lect. Notes Comput. Sci., Vol. 1514, Springer, Berlin (1998), pp. 35–50.

  36. R. S. Pierce, Associative Algebras, Springer, Berlin (1982).

    Book  MATH  Google Scholar 

  37. J. C. Robson, “Recognition of matrix rings,” Commun. Algebra, 19, 2113–2124 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  38. L. Ronyai, “Simple algebras are difficult,” in: Proc. 19th Ann. ACM Symp. Theory Comp., ACM, New York (1987), pp. 398–408.

  39. L. Ronyai, “Computing the structure of finite algebras,” J. Symbol. Comput., 9, 355–373 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  40. W. Stephenson, “Lattice isomorphisms between modules. I. Endomorphism rings,” J. London Math. Soc. (2), 1, 177–183 (1969).

  41. E. S. Ventzel, The Probability Theory [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  42. Z. Wu, J. Ding, J. E. Gower, and D. Ye, “Perturbed hidden matrix cryptosystems,” in: Computational Science and Its Applications — ICCSA 2005, Lect. Notes Comput. Sci., Vol. 3481, Springer, Berlin (2005), pp. 595–602.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Markov.

Additional information

A. A. Nechaev is deceased

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 20, No. 1, pp. 205–222, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, A.S., Markov, V.T., Mikhalev, A.A. et al. Cryptographic Algorithms on Groups and Algebras. J Math Sci 223, 629–641 (2017). https://doi.org/10.1007/s10958-017-3371-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3371-y

Navigation