Skip to main content
Log in

On recent advances in boundary-value problems in the plane

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The survey is devoted to recent advances in nonclassical solutions of the main boundary-value problems such as the well-known Dirichlet, Hilbert, Neumann, Poincaré, and Riemann problems in the plane. Such solutions are essentially different from the variational solutions of the classical mathematical physics and based on the nonstandard point of view of the geometric function theory with a clear visual sense. The traditional approach of the latter is the meaning of the boundary values of functions in the sense of the so-called angular limits or limits along certain classes of curves terminated at the boundary. This become necessary if we start to consider boundary data that are only measurable, and it is turned out to be useful under the study of problems in the field of mathematical physics as well. Thus, we essentially widen the notion of solutions and, furthermore, obtain spaces of solutions of the infinite dimension for all the given boundary-value problems. The latter concerns the Laplace equation, as well as its counterparts in the potential theory for inhomogeneous and anisotropic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agard, “Angles and quasiconformal mappings in space,” J. Anal Math., 22, 177–200 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  2. S. B. Agard and F. W. Gehring, “Angles and quasiconformal mappings,” Proc. London Math. Soc., 14a (3), 1–21 (1965).

  3. L. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, New York, 1966.

    MATH  Google Scholar 

  4. L. Ahlfors and A. Beurling, “The boundary correspondence under quasiconformal mappings,” Acta Math., 96, 125–142 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  5. K. Astala, T. Iwaniec, and G. J. Martin, Elliptic Differential Equations and Quasiconformal Mappings in the Plane, Princeton Univ. Press, Princeton, 2009.

    MATH  Google Scholar 

  6. F. Bagemihl, “Curvilinear cluster sets of arbitrary functions,” Proc. Nat. Acad. Sci. U.S.A., 41, 379–382 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Bagemihl and W. Seidel, “Regular functions with prescribed measurable boundary values almost everywhere,” Proc. Nat. Acad. Sci. U.S.A., 41, 740–743 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  8. N. K. Bary, Trigonometric Series, Vol. I and II, Macmillan, New York, 1964.

    MATH  Google Scholar 

  9. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “General Beltrami equations and BMO,” Ukr. Math. Bull., 5, No. 3, 299–320 (2008).

    MathSciNet  Google Scholar 

  10. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “On the Beltrami equations with two characteristics,” Complex Var. Ellip. Equ., 54, No. 10, 935–950 (2009).

  11. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “On integral conditions for the general Beltrami equations,” Complex Anal. Oper. Theory, 5, No. 3, 835–845 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “On the Dirichlet problem for general degenerate Beltrami equations,” Bull. Soc. Sci. Lett. Lodz. Ser. Rech. Deform., 62, No. 2, 29–43 (2012).

    MathSciNet  MATH  Google Scholar 

  13. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “Dirichlet problem for the general Beltrami equation in Jordan domains,” J. Math. Sci., 190, No. 4, 525–538 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Bojarski, V. Gutlyanskii, O. Martio, and V. Ryazanov, Infinitesimal Geometry of Quasiconformal and Bi-Lipschitz Mappings in the Plane, Europ. Math. Soc., Zürich, 2013.

    Book  MATH  Google Scholar 

  15. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “On existence and representation of solutions for general degenerate Beltrami equations,” Complex Var. Ellip. Equ., 59, No. 1, 67–75 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand, Princeton, 1971.

    MATH  Google Scholar 

  17. E. F. Collingwood, and A. J. Lohwater, The Theory of Cluster Sets, Cambridge Univ. Press, Cambridge, 1966.

    Book  MATH  Google Scholar 

  18. O. Dovgoshey, O. Martio, V. Ryazanov, and M. Vuorinen, “The Cantor function,” Expo. Math., 24, 1–37 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  19. P. L. Duren, Theory of Hp spaces, Academic Press, New York, 1970.

    MATH  Google Scholar 

  20. M. A. Efendiev and W. L. Wendland, “Nonlinear Riemann–Hilbert problems for multiply connected domains,” Nonlinear Anal., 27, No. 1 (1996), 37–58.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Efimushkin and V. Ryazanov, “On the Riemann–Hilbert problem for the Beltrami equations in quasidisks,” J. Math. Sci., 211, No. 5, 646–659 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Federer, Geometric Measure Theory, Springer, Berlin, 1969.

    MATH  Google Scholar 

  23. M. Fékete, “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten,” Math. Z., 17, 228–249 (1923).

    Article  MathSciNet  Google Scholar 

  24. F. D. Gakhov, Boundary-Value Problems, Dover, New York, 1990.

    MATH  Google Scholar 

  25. J. B. Garnett and D. E. Marshall, Harmonic Measure, Cambridge Univ. Press, Cambridge, 2005.

    Book  MATH  Google Scholar 

  26. F.W. Gehring, “On the Dirichlet problem,” Michigan Math. J., 3, 201 (1955–1956).

  27. B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in Analysis, Holden-Day, San Francisco, 1964.

    MATH  Google Scholar 

  28. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, RI, 1969.

    MATH  Google Scholar 

  29. N. V. Govorov, Riemann’s Boundary Problem with Infinite Index, Birkhäuser, Basel, 1994.

    Book  MATH  Google Scholar 

  30. M. Gromov, Partial Differential Relations, Springer, Berlin, 1986.

    Book  MATH  Google Scholar 

  31. V. Gutlyanskii, V. Ryazanov, U. Srebro, and E. Yakubov, “On recent advances in the Beltrami equations,” J. Math. Sci., 175, No. 4, 413–449 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  32. V. Gutlyanskii, V. Ryazanov, U. Srebro, and E. Yakubov, The Beltrami Equation. A Geometric Approach, Developments in Mathematics, 26, Springer Science, New York, 2012.

  33. V. Gutlyanskii, V. Ryazanov, and E. Yakubov, “The Beltrami equations and prime ends,” J. Math. Sci., 210, No. 1, 22–51 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  34. V. Gutlyanskii, V. Ryazanov, and A. Yefimushkin, “On the boundary-value problems for quasiconformal functions in the plane,” J. Math. Sci., 214, No. 2, 200–219 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  35. D. Hilbert, “Über eine Anwendung der Integralgleichungen auf eine Problem der Funktionentheorie,” in: Verhandl. des III Int. Math. Kongr., Heidelberg, 1904.

  36. D. Hilbert, Grundzüge Einer Algemeinen Theorie der Integralgleichungen, Leipzig, Berlin, 1912.

  37. T. Iwaniec, “Regularity of solutions of certain degenerate elliptic systems of equations that realize quasiconformal mappings in n-dimensional space,” in: Differential and Integral Equations. Boundary-Value Problems [in Russian], Tbilis. Gos. Univ., Tbilisi, 1979, pp. 97–111.

  38. T. Iwaniec, “Regularity theorems for solutions of partial differential equations for quasiconformal mappings in several dimensions,” Dissertationes Math., Rozprawy Mat., 198, 1–45 (1982).

  39. T. Iwaniec, “p-Harmonic tensors and quasiregular mappings,” Ann. of Math., 136, No. 3, 589–624 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  40. T. Iwaniec and G. Martin, Geometrical Function Theory and Nonlinear Analysis, Clarendon Press, Oxford, 2001.

    MATH  Google Scholar 

  41. T. Iwaniec and G. Martin, “The Beltrami equation,” Memoirs of AMS, 191, 1–92 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  42. T. Iwaniec and C. Sbordone, “Quasiharmonic fields,” Ann. Inst. H. Poincaré Anal. Non Lineaire, 18, No. 5, 519–572 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  43. G. Khimshiashvili, “Geometric aspects of Riemann–Hilbert problems,” Mem. Diff. Equa. Math. Phys., 27, 1–114 (2002).

    MathSciNet  MATH  Google Scholar 

  44. P. Koosis, Introduction to Hp Spaces, Cambridge Univ. Press, Cambridge, 1998.

    MATH  Google Scholar 

  45. D. Kovtonyuk, I. Petkov, and V. Ryazanov, “On the boundary behaviour of solutions to the Beltrami equations,” Complex Var. Ell. Equ., 58, No. 5, 647–663 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  46. D. Kovtonyuk, I. Petkov, and V. Ryazanov, “On the Dirichlet problem for the Beltrami equations in finitely connected domains,” Ukr. Math. J., 64, No. 7, 1064–1077 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  47. D. Kovtonyuk, I. Petkov, V. Ryazanov, and R. Salimov, “The boundary behaviour and the Dirichlet problem for the Beltrami equations,” St.-Petersburg Math. J., 25, 587–603 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  48. M. A. Krasnosel’skii, P. P. Zabreiko, E. I. Pustyl’nik, and P. E. Sobolevskii, Integral Operators in Spaces of Summable Functions, Noordhoff, Leiden, 1976.

    Book  MATH  Google Scholar 

  49. M. Lavrentiev, “On some boundary problems in the theory of univalent functions”, Mat. Sborn., 1(43), No. 6, 815–846 (1936).

  50. O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York, 1973.

    Book  MATH  Google Scholar 

  51. N. N. Luzin, Integral and Trigonometric Series [in Russian], editing and comments by N. K. Bary and D. E. Men’shov, Gosudarstv. Izdat. Tekhn.-Teor. Lit., Moscow-Leningrad, 1951.

  52. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer, New York, 2009.

    MATH  Google Scholar 

  53. O. Martio, S. Rickman, and J. Väisälä, “Definitions for quasiregular mappings,” Ann. Acad. Sci. Fenn. Ser. A1. Math., 448, 1–40 (1969).

  54. S. G. Mikhlin, Partielle Differentialgleichungen in der mathematischen Physik, Akademie-Verlag, Berlin, 1978.

    Google Scholar 

  55. V. V. Mityushev and S. V. Rogosin, Constructive Methods for Linear and Nonlinear Boundary-Value Problems for Analytic Functions. Theory and Applications, Chapman Hall/CRC, Boca Raton, FL, 2000.

  56. N. I. Muskhelishvili, Singular Integral Equations. Boundary Problems of Function Theory and Their Application to Mathematical Physics, Dover, New York, 1992.

  57. R. Nevanlinna, Eindeutige Analytische Funktionen, Springer, Berlin, 1953.

    Book  MATH  Google Scholar 

  58. K. Noshiro, Cluster Sets, Springer, Berlin, 1960.

    Book  MATH  Google Scholar 

  59. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, Berlin, 1992.

    Book  MATH  Google Scholar 

  60. I. I. Priwalow, Randeigenschaften analytischer Funktionen, Hochschulbücher für Mathematik, 25, Deutscher Verlag der Wissenschaften, Berlin, 1956.

    Google Scholar 

  61. V. Ryazanov, “On the Riemann–Hilbert Problem without index,” Ann. Univ. Bucharest, Ser. Math., 5 (LXIII), No. 1, 169–178 (2014).

  62. V. Ryazanov, “On Hilbert and Riemann problems. An alternative approach,” Ann. Univ. Buchar. Math. Ser., 6 (LXIV), No. 2, 237–244 (2015).

  63. V. Ryazanov, “Infinite dimension of solutions of the Dirichlet problem,” Open Math., 13, No. 1, 348–350 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  64. V. Ryazanov, “On the Riemann–Hilbert problem in multiply connected domains,” Open Math., 14, No. 1, 13–18 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  65. V. Ryazanov, “On Neumann and Poincaré problems for Laplace equation,” Anal. and Math. Phys., published online August 8, 2016, DOI 10.1007/s13324-016-0142-8; arXiv:1510.00733v6 [math.CV], July 1, 2016.

  66. V. Ryazanov, R. Salimov, U. Srebro, and E. Yakubov, “On Boundary Value Problems for the Beltrami Equations,” Contemp. Math., 591, 211–242 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  67. V. Ryazanov, U. Srebro, and E. Yakubov, “Finite mean oscillation and the Beltrami equation,” Israel J. Math., 153, 247–266 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  68. V. Ryazanov, U. Srebro, and E. Yakubov, “Integral conditions in the theory of the Beltrami equations,” Complex Var. Elliptic Equ., 57, No. 12, 1247–1270 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  69. V. Ryazanov and A. Yefimushkin, “On the Riemann–Hilbert problem for the Beltrami equations,” Contemp. Math., 667, 299–316 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  70. S. Saks, Theory of the Integral, Dover, New York, 1964.

    MATH  Google Scholar 

  71. O. Taari, “Charakterisierung der Quasikonformität mit Hilfe derWinkelverzerrung,” Ann. Acad. Sci. Fenn. Ser. A I, 390, 1–43 (1966).

    MathSciNet  MATH  Google Scholar 

  72. I. N. Vekua, Generalized Analytic Functions, Pergamon Press, London, 1962.

    MATH  Google Scholar 

  73. L. von Wolfersdorf, “On the theory of the nonlinear Riemann–Hilbert problem for holomorphic functions,” Complex Variables Theory Appl., 3, No. 4, 457–480 (1984).

    Article  MathSciNet  Google Scholar 

  74. A. Yefimushkin, “On Neumann and Poincaré problems in A-harmonic analysis,” Adv. Analysis, 1, No. 2, 114–120 (2016).

    Article  MathSciNet  Google Scholar 

  75. W. H. Young, “Zur Lehre der nicht abgeschlossenen Punktmengen,” Ber. Verh. Sachs. Akad. Leipzig, 55, 287–293 (1903).

    MATH  Google Scholar 

  76. A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 1959.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Ya. Gutlyanskiĭ.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 13, No. 2, pp. 167–212 April–June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutlyanskiĭ, V.Y., Ryazanov, V.I. On recent advances in boundary-value problems in the plane. J Math Sci 221, 638–670 (2017). https://doi.org/10.1007/s10958-017-3257-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3257-z

Keywords

Navigation