Skip to main content
Log in

Superexponentially Convergent Algorithm for an Abstract Eigenvalue Problem with Applications to Ordinary Differential Equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

A new algorithm for the solution of eigenvalue problems for linear operators of the form A = A + B (with a special application to high-order ordinary differential equations) is proposed and justified. The algorithm is based on the approximation of A by an operator \( \overline{A}=A+\overline{B} \) such that the eigenvalue problem for Ā is supposed to be simpler than for A: The algorithm for this eigenvalue problem is based on the homotopy idea and, for a given eigenpair number, recursively computes a sequence of approximate eigenpairs that converges to the exact eigenpair with a superexponential convergence rate. The eigenpairs can be computed in parallel for all prescribed indexes. The case of multiple eigenvalues of the operator Ā is emphasized. Examples of eigenvalue problems for the high-order ordinary differential operators are presented to support the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Akulenko and S. V. Nesterov, High-Precision Methods in Eigenvalue Problems and Their Applications, Chapman & Hall/CRC, Boca Raton, etc. (2005).

  2. M. Armstrong, Basic Topology, Springer, Berlin (1979).

    MATH  Google Scholar 

  3. R. Ballarini, The Da Vinci–Euler–Bernoulli Beam Theory?, Mech. Eng. Mag. Online, April 18, 2003, No. 07, http://www.memagazine.org/contents/current/webonly/webex418.html.

  4. B. I. Bandyrskii, I. Gavrilyuk, I. I. Lazurchak, and V. L. Makarov, “Functional-discrete method (FD-method) for matrix Sturm–Liouville problems,” CMAM, 5, No. 4, 362–386 (2005).

  5. B. Bandyrskij, V. Makarov, and O. Ukhanev, “FD-method for the Sturm–Liouville problem. Exponential convergence rate,” J. Numer. Appl. Math., 85, No. 1, 1–60 (2000).

    Article  MATH  Google Scholar 

  6. N. N. Bogoliouboff and N. M. Kryloff, “Sopra il metodo dei coefficienti constanti (metodo dei tronconi) per l’integrazione approssimata delle equazioni differenziali della fisica matematica,” Boll. Unione Mat. Ital., 7, No. 2, 72–77 (1928).

    MATH  Google Scholar 

  7. I. P. Gavrilyuk, A. V. Klimenko, V. L. Makarov, and N. O. Rossokhata, “Exponentially convergent parallel algorithm for nonlinear eigenvalue problems,” IMA J. Numer. Anal., No. 27, 818–838 (2007).

  8. I. P. Gavrilyuk, V. L. Makarov, and A. M. Popov, “Superexponentially convergent parallel algorithm for eigenvalue problems for the fourth order ODE’s,” J. Numer. Appl. Math., 100, No. 1, 60–81 (2010).

    Google Scholar 

  9. I. P. Gawrilyuk and V. Makarov, “Superexponentially convergent parallel algorithm for eigenvalue problems in Hilbert spaces,” in: V. Kleiza, et al. (editors), Proc. Internat. Conf. “Different. Equat. Their Appl. (DETA-2009),’ ’Kaunas (2009), pp. 86–92.

  10. M. Gordienko and V. Samoylenko, “Mathematical researches of M. M. Bogoliubov of time period 1923–1932,” Visn. Kyiv. Nats. Univ. im. T. Shevchenko. Mat. Mekh., No. (2)30, 25–32 (2013).

  11. L. Greenberg, “An oscillation method for fourth-order, self-adjoint, two-point boundary value problems with nonlinear eigenvalues,” SIAM J. Math. Anal., 22, No. 4, 1021–1042 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Han, H. Benaroya, and T. Wei, “Dynamics of transversely vibrating beams using four engineering theories,” J. Sound Vibrat., 225, No. 5, 935–988 (1999).

    Article  MATH  Google Scholar 

  13. E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen, I. Gew¨ohnliche Differentialgleichungen, Teubner, Stuttgart (2002).

  14. A. N. Kolmogorov and S. V. Fomin, Reelle Funktionen und Funktionalanalysis, VEB Deutscher Verlag der Wissenschaften, Berlin (1975).

  15. S. G. Krein, et al., Functional Analysis [in Russian], Nauka, Moscow (1972).

  16. V. L. Makarov, “FD-method–exponential convergence rate,” J. Comput. Appl. Math., No. 82, 69–74 (1997).

  17. M. A. Naimark, “Linear differential operators I. Elementary theory of linear differential operators, George G. Harrap & Company, 1967.

  18. M. A. Naimark, Linear Differential Operators I. Elementary Theory of Linear Differential Operators [in Russian], Nauka, Moscow (1969).

  19. S. Pruess, “Estimating the eigenvalues of Sturm–Liouville problems by approximating the differential equation,” SIAM J. Numer. Anal., 10, 55–68 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Pruess and C. Fulton, “Mathematical software for Sturm–Liouville problems,” ACM Trans. Math. Software, 19, No. 3, 360–376 (1993).

    Article  MATH  Google Scholar 

  21. J. Pryce, Numerical Solution of Sturm–Liouville Problems, Oxford Univ. Press, Oxford, UK (1993).

  22. M. Roseau, Vibrations in Mechanical Systems, Springer-Verlag, Berlin (1987).

    Book  MATH  Google Scholar 

  23. A. Zettl, Sturm–Liouville theory, Amer. Math. Soc. (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Gavrilyuk.

Additional information

Published in Neliniini Kolyvannya, Vol. 18, No. 3, pp. 332–356, July–September, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilyuk, I.P., Makarov, V.L. & Romanyuk, N.M. Superexponentially Convergent Algorithm for an Abstract Eigenvalue Problem with Applications to Ordinary Differential Equations. J Math Sci 220, 273–300 (2017). https://doi.org/10.1007/s10958-016-3184-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-3184-4

Navigation