Skip to main content
Log in

On Schur 2-Groups

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

A finite group G is called a Schur group if every Schur ring over G is the transitivity module of a point stabilizer in a subgroup of Sym(G) that contains all permutations induced by the right multiplications in G. It is proved that the group \( {\mathrm{\mathbb{Z}}}_2\times {\mathrm{\mathbb{Z}}}_{2^n} \) is Schur, which completes the classification of Abelian Schur 2-groups. It is also proved that any non-Abelian Schur 2-group of order larger than 32 is dihedral (the Schur 2-groups of smaller orders are known). Finally, the Schur rings over a dihedral 2-group G are studied. It turns out that among such rings of rank at most 5, the only obstacle for G to be a Schur group is a hypothetical ring of rank 5 associated with a divisible difference set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Bailey and P. J. Cameron, “Crested products of association schemes,” J. London Math. Soc., 72, No. 2, 1–24 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Beth, D. Jungnickel, and H. Lenz, Design Theory, Cambridge University Press, Cambridge (1999).

    Book  MATH  Google Scholar 

  3. P. J. Cameron, “On groups with several doubly-transitive permutation representations,” Math. Z., 128, 1–14 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. A. Davis and K. Smith, “A construction of difference sets in high exponent 2-groups using representation theory,” J. Alg. Combin., 3, 137–151 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Evdokimov and I. Ponomarenko, “Characterization of cyclotomic schemes and normal Schur rings over a cyclic group”, St. Petersburg Math. J., 14, No. 2, 189–221 (2003).

    MathSciNet  MATH  Google Scholar 

  6. S. Evdokimov and I. Ponomarenko, “A new look at the Burnside-Schur theorem,” Bull. London Math. Soc., 37, 535–546 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Evdokimov and I. Ponomarenko, “Permutation group approach to association schemes,” Europ. J. Combin., 30, No. 6, 1456–1476 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Evdokimov and I. Ponomarenko, “Schurity of S-rings over a cyclic group and generalized wreath product of permutation groups,” Algebra Anal., 24, No. 3, 84–127 (2012).

    MathSciNet  MATH  Google Scholar 

  9. S. Evdokimov, I. Kovács, and I. Ponomarenko, “Characterization of cyclic Schur groups,” Algebra Anal., 25, No. 5, 61–85 (2013).

    MathSciNet  MATH  Google Scholar 

  10. S. Evdokimov and I. Ponomarenko, “Schur rings over a product of Galois rings,” Beitr. Algebra Geom., 55, No. 1, 105–138 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Evdokimov, I. Kovács, and I. Ponomarenko, “On schurity of finite Abelian groups,” Commun. Algebra, 44, No. 1, 101–117 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Hirasaka and M. Muzychuk, “Association schemes generated by a non-symmetric relation of valency 2,” Discr. Math., 244, 109–135 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. A. Jones, “Cyclic regular subgroups of primitive permutation groups,” J. Group Theory, 5, 403–407 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  14. L. A. Kaluzhnin and M. Kh. Klin, “Certain numerical invariants of permutation groups,” Latv. Mat. Ezheg., 18, 81–99 (1976).

    MATH  Google Scholar 

  15. M. Kh. Klin, “The axiomatics of cellular rings”, in: Investigations in the algebraic theory of combinatorial objects, Moscow (1985), pp. 6–32.

  16. R. Kochendörffer, “Untersuchungen über eine Vermutung von W. Burnside,” Schr. Math. Semin. Inst. Angew. Math. Univ. Berlin, 3, 155–180 (1937).

    MATH  Google Scholar 

  17. I. Kovács, D. Marušič, and M. Muzychuk, “On dihedrants admitting arc-regular group actions,” J. Alg. Combin., 35, 409–426 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  18. K. H. Leung and S. L. Ma, “The structure of Schur rings over cyclic groups,” J. Pure Appl. Algebra, 66, 287–302 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  19. K. H. Leung and S. H. Man, “On Schur Rings over Cyclic Groups,” Israel J. Math., 106, 251–267 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Muzychuk, V -rings of Permutation Groups That Have Invariant Metric [in Russian], PhD. Thesis (1987).

  21. M. Muzychuk and I. Ponomarenko, “Schur rings,” Europ. J. Combin., 30, No. 6, 1526–1539 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Muzychuk and I. Ponomarenko, “On quasi-thin association schemes,” J. Algebra, 351, 467–489 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  23. Ch. Pech, S. Reichard, and M. Ziv-Av, “The COCO share package for GAP,” https://github.com/MatanZ/coco-ii.

  24. I. N. Ponomarenko, “Bases of Schurian antisymmetric coherent configurations and isomorphism test for Schurian tournaments,” J. Math. Sci., 192, No. 3, 316–338 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Ponomarenko and A. Vasil’ev, “On non-Abelian Schur groups,” J. Algebra Appl., 13 No. 8 (2014), Article ID 1450055.

  26. R. Pöschel, “Untersuchungen von S-ringen insbesondere im gruppenring von p-gruppen,” Math. Nachr., 60, 1–27 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Pott, Finite Geometry and Character Theory, Springer-Verlag, Berlin (1995).

    Book  MATH  Google Scholar 

  28. I. Schur, “Zur Theorie der einfach transitiven Permutationgruppen,” S.-B. Preus Akad. Wiss. Phys. Math. Kl., 598–623 (1933).

  29. H. Wielandt, “Zur Theorie der einfach transitiven Permutationsgruppen. II,” Math. Z., 52, 384–393 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Wielandt, Finite Permutation Groups, Academic Press, New York–London (1964).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Muzychuk.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 435, 2015, pp. 113–162.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzychuk, M.E., Ponomarenko, I.N. On Schur 2-Groups. J Math Sci 219, 565–594 (2016). https://doi.org/10.1007/s10958-016-3128-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-3128-z

Navigation