Skip to main content
Log in

On the Best Linear Approximation of Holomorphic Functions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let Ω be an open subset of the complex plane and let E be a compact subset of Ω. The present survey is concerned with linear n-widths for the class H (Ω) in the space C(E) and some problems on the best linear approximation of classes of Hardy–Sobolev-type in L p-spaces. It is known that the partial sums of the Faber series give the classical method for approximation of functions f ∈ H (Ω) in the metric of C(E) when E is a bounded continuum with simply connected complement and Ω is a canonical neighborhood of E. Generalizations of the Faber series are defined for the case where Ω is a multiply connected domain or a disjoint union of several such domains, while E can be split into a finite number of continua. The exact values of n-widths and asymptotic formulas for the ε-entropy of classes of holomorphic functions with bounded fractional derivatives in domains of tube type are presented. Also, some results about Faber’s approximations in connection with their applications in numerical analysis are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Andrievskii and H.-P. Blatt, “On the distribution of zeros of Faber polynomials,” Comput. Methods Funct. Theory, 11, 263–282 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  2. K. I. Babenko, Foundations of Numerical Analysis [in Russian], Nauka, Moscow (1986).

  3. V. I. Belyi, “Modern methods of the geometric theory of functions of a complex variable in approximation problems,” Algebra Analiz, 9, No. 3, 3–40 (1997).

  4. V. N. Belykh, “Estimates of Kolmogorov’s ε-entropy for compact sets of infinitely differentiable aperiodic functions (Babenko’s problem),” Dokl. Math., 88, No. 2, 503–507 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. G. Borisov and S. V. Shabanov, “Wave packet propagation by the Faber polynomial approximation in electrodynamics of passive media,” J. Comput. Phys., 216, 391–402 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Bouali, “Faber polynomials, Cayley–Hamilton equation and Newton symmetric functions,” Bull. Sci. Math., 130, 49–70 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Bruj and G. Schmieder, “Best approximation and saturation on domains bounded by curves of bounded rotation,” J. Approx. Theory, 100, 157–182 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Carney, A. Etropolski, and S. Pitman, “Powers of the eta-function and Hecke operators,” Int. J. Number Theory, 8, 599–611 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  9. O. Devys, “Faber polynomials and spectrum localisation,” Comput. Methods Funct. Theory, 13, 107–131 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Ding, K. I. Gross, and D. S. P. Richards, “The N-widths of spaces of holomorphic functions on bounded symmetric domains of tube type. I,” J. Approx. Theory, 104, 121–141 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  11. L. K. Dodunova and S. A. Savikhin, “Completeness of subsystems of Faber polynomials,” Izv. Vyssh. Uchebn. Zaved. Mat., 9, 3–7 (2012).

    MathSciNet  MATH  Google Scholar 

  12. M. M. Dragilev, “On common bases of the spaces A(G) and \( \overline{A}\left(\overline{G}\right) \),” Sib. Mat. Zh., 40, No. 1, 69–74 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. L. Duren, “Distortion in certain conformal mappings of an annulus,” Michigan Math. J., 10, No. 4, 431–441 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  14. E. M. Dyn’kin, “The rate of polynomial approximation in the complex domain,” in: Complex Analysis and Spectral Theory, Lect. Notes Math., Vol. 864, Springer, Berlin (1981), pp. 90–142.

  15. E. M. Dyn’kin, “A constructive characterization of classes of S. L. Sobolev and O. V. Besov,” Proc. Steklov Inst. Math. 155, 39–74 (1983).

    MATH  Google Scholar 

  16. V. D. Erokhin, “On asymptotics of the ε-entropy of analytic functions,” Dokl. Akad. Nauk SSSR, 120, No. 5, 949–952 (1958).

    MathSciNet  Google Scholar 

  17. V. D. Erokhin, “Some theorems on analytic mapping of multiconnected domains,” Usp. Mat. Nauk, 15, No. 4, 203–204 (1960).

    Google Scholar 

  18. V. D. Erokhin, “Estimates of the ε-entropy and linear widths of some classes of analytic functions,” in: Markushevich A. I., ed., Researches in Modern Problems of Function Theory of a Complex Variable Fizmatgiz, Moscow (1961), pp. 159–167.

  19. V. D. Erokhin, “Best linear approximations of functions analytically continuable from a given continuum into a given region,” Usp. Mat. Nauk, 23, No. 1, 91–132 (1968).

    Google Scholar 

  20. J. Faraut and A. Koranyi, Analysis on Symmetric Cones, Oxford Univ. Press, New York (1994).

  21. Yu. A. Farkov, “Asymptotic properties of generalized Faber–Erokhin basis functions,” Sib. Mat. Zh., 22, No. 4, 173–189 (1981).

  22. Yu. A. Farkov, “Faber–Erokhin basis functions of several variables and estimates of ε-entropy,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 81–88 (1982).

  23. Yu. A. Farkov, “Faber–Erokhin operators and isomorphisms of some spaces of analytic functions,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 7, 81–83 (1982).

  24. Yu. A. Farkov, “Faber–Erokhin basic functions in the neighborhood of several continua,” Math. Notes, 36, No. 6, 883–892 (1984).

  25. Yu. A. Farkov, “Widths of classes of analytic functions with bounded derivatives,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 4, 84–86 (1988).

  26. Yu. A. Farkov, “Widths of Hardy classes and Bergman classes on the ball in n,” Usp. Mat. Nauk, 45, No. 5, 197–198 (1990).

    MathSciNet  MATH  Google Scholar 

  27. Yu. A. Farkov, “The N-widths of Hardy–Sobolev spaces of several complex variables,” J. Approx. Theory, 75, 183–197 (1993).

  28. Yu. A. Farkov, “n-widths, Faber expansion, and computation of analytic functions,” J. Complexity, 12, 58–79 (1996).

  29. Yu. A. Farkov, “On the ε-entropy of classes of holomorphic functions,” Math. Notes, 68, No. 2, 286–293 (2000).

  30. N. A. Farkova, “The use of Faber polynomials to solve systems of linear equations,” Zh. Vychisl. Mat. Mat. Fiz., 28, No. 11, 1634–1648 (1988).

    MathSciNet  MATH  Google Scholar 

  31. N. A. Farkova, “Application of Faber polynomials to the calculation of eigenvalues,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 9, 65–72 (1992).

  32. S. D. Fisher and C. A. Micchelli, “The n-width of sets of analytic functions,” Duke Math. J., 47, 789–801 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  33. L. Frerick and J. M¨uller, “Polynomial approximation on compact sets bounded by Dini-smooth arcs,” Comput. Methods Funct. Theory, 3, 273–284 (2003).

  34. D. Gaier, “On the decrease of Faber polynomials in domains with piecewise analytic boundary,” Analysis, 21, 219–229 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  35. T. H. Ganelius, “Rational approximation in the complex plane and on the line,” Ann. Acad. Sci. Fenn. Ser. A. I. Math., 2, 129–145 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  36. I. Garaus, “The numerical solution for system of singular integro-differential equations by Faber–Laurent polynomials,” in: Zh. Li, L. Vulkov, and J. Wásniewski, eds., Numerical Analysis and Its Applications: Third Int. Conf., NAA 2004, Rousse, Bulgaria, June 29–July 3, 2004, Revised Selected Papers, Lect. Notes Comput. Sci., Vol. 3401, Springer, Berlin (2005), pp. 219–223.

  37. P. Henrici, Applied and Computational Complex Analysis, Wiley, New York (1986).

    MATH  Google Scholar 

  38. O. Hübner, “Die Faktorisierung konformer Abbildungen und Anwendungen,” Math. Z., 99, 193–206 (1967).

    Article  MathSciNet  Google Scholar 

  39. S. Z. Jafarov, “The inverse theorem of approximation theory in Smirnov–Orlicz classes,” Math. Inequal. Appl., 15, No. 4, 835–844 (2012).

    MathSciNet  MATH  Google Scholar 

  40. V. N. Konovalov, “To the problem of widths of classes of analytic functions,” Ukr. Mat. Zh., 30, No. 5, 668–670 (1978).

    MathSciNet  MATH  Google Scholar 

  41. P. Novati, “Solving linear initial value problems by Faber polynomials,” Numer. Linear Algebra Appl., 10, 247–270 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  42. K. Yu. Osipenko, “Optimal interpolation of analytic functions,” Math. Notes, 12, No. 4, 712–719 (1972).

  43. K. Yu. Osipenko, “Exact n-widths of Hardy–Sobolev classes,” Constr. Approx., 13, No. 1, 17–27 (1997).

  44. A. A. Pekarskii, “Rational approximations of functions with derivative in a V. I. Smirnov space,” Algebra Analiz, 13, No. 2, 165–190 (2001).

    MathSciNet  Google Scholar 

  45. V. V. Peller, “Rational approximation in L p and Faber transforms,” Zap. Nauchn. Sem. LOMI, 157, 70–75 (1987).

    MathSciNet  Google Scholar 

  46. W. Rudin, Function theory in the unit ball of ℂ n, Springer, New York (1980).

  47. S. V. Shvedenko, “Hardy classes and related spaces of analytic functions in the unit disc, polydisc and ball,” J. Sov. Math., 39, No. 6, 3011–3087 (1987).

    Article  MATH  Google Scholar 

  48. V. I. Smirnov and N. A. Lebedev, Functions of a Complex Variable. Constructive Theory, MIT Press, Cambridge, MA (1968).

  49. G. Starke and R. S. Varga, “A hybrid Arnoldi–Faber iterative method for nonsymmetric systems of linear equations,” Numer. Math., 64, 231–240 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  50. P. K. Suetin, “Order comparison of various norms of polynomials in a complex domain,” Mat. Zap. Ural’sk. Univ., 5, No. 4, 91–100 (1966).

    MathSciNet  Google Scholar 

  51. P. K. Suetin, Series of Faber Polynomials [in Russian], Nauka, Moscow (1984); Gordon and Breach (1998).

  52. S. P. Suetin, “Padé approximants and efficient analytic continuation of a power series,” Russ. Math. Surv., 57, No. 1, 43–141 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  53. V. M. Tikhomirov, “Approximation theory,” in: R. V. Gamkrelidze, ed., Analysis-II. Convex Analysis and Approximation Theory, Encycl. Math. Sci., Vol. 14, Springer, Berlin (1990), pp. 93–243.

  54. V. Totik, “Chebyshev polynomials on a system of curves,” J. Anal. Math., 118, No. 1, 317–338 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  55. M. M. Tsvil’, “On the convergence of ball means of double Fourier–Faber series,” Izv. Vyssh. Uchebn. Zaved. Severo-Kavkaz. Reg. Estestv. Nauki., 11, 63–69 (2005).

  56. S. B. Vakarchuk and M. Sh. Shabozov, “The widths of classes of analytic functions in a disc,” Mat. Sb., 201, No. 8, 3–22 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  57. J. L. Walsh, “Sur l’approximation par fonctions rationnelles et par fonctions holomorphes bornées,” Ann. Mat., 39, No. 4, 267–277 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  58. J. L. Walsh, “On the conformal mapping of multiply connected regions,” Trans. Am. Math. Soc., 82, No. 1, 128–146 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  59. J. L. Walsh, “A generalization of Faber’s polynomials,” Math. Ann., 136, No. 1, 23–33 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  60. J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc., Providence (1960).

  61. J. L. Walsh and W. E. Sewell, “Sufficient conditions for various degrees of approximation by polynomials,” Duke Math. J., 6, No. 3, 658–705 (1940).

    Article  MathSciNet  MATH  Google Scholar 

  62. P. Wójcik, M. A. Sheshko, and S. M. Sheshko, “Application of Faber polynomials to the approximate solution of singular integral equations with the Cauchy kernel,” Differ. Equ., 49, No. 2, 198–209 (2013).

  63. V. P. Zaharyuta, “Kolmogorov problem on widths asymptotics and pluripotential theory,” in: A. Aytuna, ed., Functional Analysis and Complex Analysis: Functional Analysis and Complex Analysis, September 17–21, 2007, Sabancı University, ˙Istanbul, Turkey, Contemp. Math., Vol. 481, Amer. Math. Soc. (2009), pp. 171–196.

  64. V. Zaharyuta, “On asymptotics of entropy of a class of analytic functions,” Funct. Approx. Comment. Math., 44, No. 2, 307–315 (2011).

    Article  MathSciNet  Google Scholar 

  65. J. Zhang, “Symbolic and numerical computation on Bessel functions of complex argument and large magnitude,” J. Comput. Appl. Math. 75, 99–118 (1996).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Farkov.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 19, No. 5, pp. 185–212, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farkov, Y.A. On the Best Linear Approximation of Holomorphic Functions. J Math Sci 218, 678–698 (2016). https://doi.org/10.1007/s10958-016-3050-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-3050-4

Navigation