Skip to main content
Log in

Boolean-Valued Analysis of Order-Bounded Operators

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This is a survey of some recent applications of Boolean-valued models of set theory to the study of order-bounded operators in vector lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. A. Abramovich and A. K. Kitover, “d-Independence and d-bases in vector lattices,” Rev. Roum. Math. Pures Appl., 44, 667–682 (1999).

    MathSciNet  MATH  Google Scholar 

  2. Y. A. Abramovich and A. K. Kitover, Inverses of Disjointness Preserving Operators, Mem. Amer. Math. Soc., Vol. 679, Amer. Math. Soc, Providence (2000).

  3. Y. A. Abramovich and A. K. Kitover, “d-Independence and d-bases,” Positivity, 7, No. 1, 95–97 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  4. Yu. A. Abramovich, A. I. Veksler, and A. V. Koldunov, “On disjointness preserving operators,” Dokl. Akad. Nauk SSSR, 289, No. 5, 1033–1036 (1979).

    MathSciNet  MATH  Google Scholar 

  5. Yu. A. Abramovich, A. I. Veksler, and A. V. Koldunov, “Disjointness-preserving operators, their continuity, and multiplicative representation,” in: Linear Operators and Their Applications [in Russian], Leningrad Ped. Inst., Leningrad (1981), pp. 3–34.

  6. J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, Cambridge (1989).

  7. G. P. Akilov, E. V. Kolesnikov, and A. G. Kusraev, “On order continuous extension of a positive operator,” Sib. Mat. Zh., 29, No. 5, 24–35 (1988).

    MathSciNet  MATH  Google Scholar 

  8. G. P. Akilov, E. V. Kolesnikov, and A. G. Kusraev, “The Lebesgue extension of a positive operator,” Dokl. Akad. Nauk SSSR, 298, No. 3, 521–524 (1988).

    MathSciNet  MATH  Google Scholar 

  9. G. P. Akilov and S. S. Kutateladze, Ordered Vector Spaces [in Russian], Nauka, Novosibirsk (1978).

    MATH  Google Scholar 

  10. C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, New York (1985).

    MATH  Google Scholar 

  11. J. L. Bell, Boolean-Valued Models and Independence Proofs in Set Theory, Clarendon Press, New York (1985).

    MATH  Google Scholar 

  12. S. J. Bernau, C. B. Huijsmans, and B. de Pagter, “Sums of lattice homomorphisms,” Proc. Am. Math. Soc., 115, No. 1, 151–156 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Boulabiar, “Recent trends on order-bounded disjointness preserving operators,” Irish Math. Soc. Bull., 62, 43–69 (2008).

    MathSciNet  MATH  Google Scholar 

  14. K. Boulabiar, G. Buskes, and G. Sirotkin, “Algebraic order-bounded disjointness preserving operators and strongly diagonal operators,” Integr. Equ. Oper. Theory, 54, 9–31 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Bourgain, “Real isomorphic complex Banach spaces need not be complex isomorphic,” Proc. Am. Math. Soc., 96, 221–226 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  16. P. J. Cohen, Set Theory and the Continuum Hypothesis, W. A. Benjamin, New York (1966).

  17. J. L. B. Cooper, “Coordinated linear spaces,” Proc. London Math. Soc., 3, 305–327 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Dieudonné, “Complex structures on real Banach spaces,” Proc. Am. Math. Soc., 3, 162–164 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Dodds, C. B. Huijsmans, and B. de Pagter, “Characterizations of conditional expectation-type operators,” Pacific J. Math., 141, No. 1, 55–77 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Douglas, “Contractive projections on L1 space,” Pacific J. Math., 15, No. 2, 443–462 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Duhoux and M. Meyer, “A new proof of the lattice structure of orthomorphisms,” J. London Math. Soc., 25, No. 2, 375–378 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  22. E. I. Gordon, “Real numbers in Boolean-valued models of set theory and K-spaces,” Dokl. Akad. Nauk SSSR, 237, No. 4, 773–775 (1977).

    MathSciNet  Google Scholar 

  23. E. I. Gordon, “K-spaces in Boolean-valued models of set theory,” Dokl. Akad. Nauk SSSR, 258, No. 4, 777–780 (1981).

    MathSciNet  Google Scholar 

  24. E. I. Gordon, “To the theorems of identity preservation in K-spaces,” Sib. Mat. Zh., 23, No. 5., 55–65 (1982).

    Google Scholar 

  25. W. T. Gowers and B. Maurey, “The unconditional basic sequence problem,” J. Am. Math. Soc., 6, 851–874 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  26. W. T. Gowers and B. Maurey, “Banach spaces with small spaces of operators,” Math. Ann., 307, 543–568 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Grothendieck, “Une caractérisation vectorielle-métrique des espae L1,” Can. J. Math., 4, 552–561 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. E. Gutman, “Locally one-dimensional K-spaces and σ-distributive Boolean algebras,” Sib. Adv. Math., 5, No. 2, 99–121 (1995).

    MathSciNet  Google Scholar 

  29. A. E. Gutman, “Disjointness preserving operators,” in: S. S. Kutateladze, ed., Vector Lattices and Integral Operators, Kluwer, Dordrecht (1996), pp. 361–454.

    Google Scholar 

  30. A. E. Gutman, A. G. Kusraev, and S. S. Kutateladze, The Wickstead Problem, Preprint, IAMI VSC RAS, No. 3, Vladikavkaz (2007).

  31. C. B. Huijsmans and A. W. Wickstead, “The inverse of band preserving and disjointness preserving operators,” Indag. Math., 3, No. 2, 179–183 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  32. T. J. Jech, Set Theory, Springer, Berlin (1997).

    Book  MATH  Google Scholar 

  33. L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1984).

    MATH  Google Scholar 

  34. L. V. Kantorovich, B. Z. Vulikh, and A. G. Pinsker, Functional Analysis in Semiordered Spaces [in Russian], Gostekhizdat, Moscow (1950).

    MATH  Google Scholar 

  35. M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Birkhäuser, Basel (2009).

    Book  MATH  Google Scholar 

  36. A. G. Kusraev, “General desintegration formulas,” Dokl. Akad. Nauk SSSR, 265, No. 6, 1312–1316 (1982).

    MathSciNet  Google Scholar 

  37. A. G. Kusraev, “Order continuous functionals in Boolean-valued models of set theory,” Sib. Math. J., 25, No. 1, 57–65 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  38. A. G. Kusraev, “Numeric systems in Boolean-valued models of set theory,” in: Proc. VIII All-Union Conf. Math. Logic, Moscow (1986), p. 99.

  39. A. G. Kusraev, Dominated Operators, Kluwer, Dordrecht (2000).

    Book  MATH  Google Scholar 

  40. A. G. Kusraev, Dominated Operators [in Russian], Nauka, Moscow (2003).

    MATH  Google Scholar 

  41. A. G. Kusraev, “On band preserving operators,” Vladikavkaz Math. J., 6, No. 3, 47–58 (2004).

    MathSciNet  MATH  Google Scholar 

  42. A. G. Kusraev, “Automorphisms and derivations in extended complex f-algebras,” Sib. Math. J., 47, No. 1, 97–107 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  43. A. G. Kusraev, “Analysis, algebra, and logics in operator theory,” in: Korobeĭnik Yu. F. and Kusraev A. G., eds., Complex Analysis, Operator Theory, and Mathematical Modeling [in Russian], VSC RAS, Vladikavkaz (2006), pp. 171–204.

  44. A. G. Kusraev and S. S. Kutateladze, Subdifferentials: Theory and Applications, Kluwer Academic, Dordrecht (1995).

    Book  MATH  Google Scholar 

  45. A. G. Kusraev and S. S. Kutateladze, Nonstandard Methods of Analysis, Kluwer Academic, Dordrecht (1994).

    Book  MATH  Google Scholar 

  46. A. G. Kusraev and S. S. Kutateladze, Boolean-Valued Analysis, Kluwer Academic, Dordrecht (1999).

    Book  MATH  Google Scholar 

  47. A. G. Kusraev and S. S. Kutateladze, Introduction to Boolean-Valued Analysis [in Russian], Nauka, Moscow (2005).

  48. Z. A. Kusraeva, “Band preserving algebraic operators,” Vladikavkaz. Math˙ Zh., 15, No. 3, 54–57(2013).

  49. Z. A. Kusraeva, “Involutions and complex structures on real vector lattices,” to appear.

  50. S. S. Kutateladze, “Choquet boundaries in K-spaces,” Usp. Mat. Nauk, 30, No. 4, 107–146 (1975).

    MathSciNet  MATH  Google Scholar 

  51. S. S. Kutateladze, “Convex operators,” Usp. Mat. Nauk, 34, No. 1, 167–196 (1979).

    MathSciNet  MATH  Google Scholar 

  52. S. S. Kutateladze, “On differences of lattice homomorphisms,” Sib. Mat. Zh., 46, No. 2, 393–396 (2005).

  53. S. S. Kutateladze, “On Grothendieck subspaces,” Sib. Mat. Zh., 46, No. 3, 620–624 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  54. H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer, Berlin (1974).

    Book  MATH  Google Scholar 

  55. J. Lindenstrauss and D. E. Wulbert, “On the classification of the Banach spaces whose duals are L1-spaces,” J. Funct. Anal., 4, 332–349 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  56. W. A. J. Luxemburg and B. de Pagter, “Maharam extension of positive operators and f-algebras,” Positivity, 6, No. 2, 147–190 (2002).

  57. W. A. J. Luxemburg and A. Schep, “A Radon–Nikodým type theorem for positive operators and a dual,” Indag. Math., 40, 357–375 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  58. W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces, Vol. 1, North-Holland, Amsterdam (1971).

    MATH  Google Scholar 

  59. D. Maharam, “The representation of abstract integrals,” Trans. Am. Math. Soc., 75, No. 1, 154–184 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  60. D. Maharam, “On kernel representation of linear operators,” Trans. Am. Math. Soc., 79, No. 1, 229–255 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  61. D. Maharam, “On positive operators,” in: Conf. Modern Analysis and Probability, Contemp. Math., Vol. 26, Amer. Math. Soc., Providence (1984), pp. 263–277.

  62. T. N. McPolin and A. W. Wickstead, “The order boundedness of band preserving operators on uniformly complete vector lattices,” Math. Proc. Cambridge Philos. Soc., 97, No. 3, 481–487 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  63. M. Meyer, “Le stabilisateur d’un espace vectoriel réticulé,” C. R. Acad. Sci. Ser. A, 283, 249–250 (1976).

    MATH  Google Scholar 

  64. P. Meyer-Nieberg, Banach Lattices, Springer, Berlin (1991).

    Book  MATH  Google Scholar 

  65. H. H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin (1974).

    Book  MATH  Google Scholar 

  66. H.-V. Schwarz, Banach Lattices and Operators, Teubner, Leipzig (1984).

    MATH  Google Scholar 

  67. Zb. Semadeni, Banach Spaces of Continuous Functions, Polish Sci. Publ., Warszawa (1971).

  68. R. Sikorski, Boolean Algebras, Springer, Berlin (1964).

    MATH  Google Scholar 

  69. R. Solovay and S. Tennenbaum, “Iterated Cohen extensions and Souslin’s problem,” Ann. Math., 94, No. 2, 201–245 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  70. S. Szarek, “On the existence and uniqueness of complex structure and spaces with “few” operators,” Trans. Am. Math. Soc., 293, 339–353 (1986).

    MathSciNet  MATH  Google Scholar 

  71. S. Szarek, “A superreflexive Banach space which does not admit complex structure,” Proc. Am. Math. Soc., 97, 437–444 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  72. G. Takeuti, Two Applications of Logic to Mathematics, Iwanami, Tokyo; Princeton Univ. Press, Princeton (1978).

  73. G. Takeuti, “A transfer principle in harmonic analysis,” J. Symb. Logic, 44, No. 3, 417–440 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  74. G. Takeuti, “Boolean-valued analysis,” in: Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977), Lect. Notes Math., Vol. 753, Springer, Berlin (1979), pp. 714–731.

  75. G. Takeuti and W. M. Zaring, Axiomatic Set Theory, Springer, New York (1973).

    Book  MATH  Google Scholar 

  76. D. A. Vladimirov, Boolean Algebras [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  77. B. Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces [in Russian], Fizmatgiz, Moscow (1961).

    MATH  Google Scholar 

  78. B. Z. Vulikh and G. Ya. Lozanovskii, “On the representation of completely linear and regular functionals in partially ordered spaces,” Mat. Sb., 84 (126), No. 3, 331–352 (1971).

  79. A. W. Wickstead, “Representation and duality of multiplication operators on Archimedean Riesz spaces,” Compositio Math., 35, No. 3, 225–238 (1977).

    MathSciNet  MATH  Google Scholar 

  80. A. C. Zaanen, Riesz Spaces, Vol. 2, North-Holland, Amsterdam (1983).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kusraev.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 19, No. 5, pp. 89–126, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusraev, A.G., Kutateladze, S.S. Boolean-Valued Analysis of Order-Bounded Operators. J Math Sci 218, 609–635 (2016). https://doi.org/10.1007/s10958-016-3046-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-3046-0

Navigation