Skip to main content
Log in

Oriented Degree of Fredholm Maps: Finite-Dimensional Reduction Method

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The complete oriented degree theory for proper nonlinear Fredholm zero-index maps and their compact perturbations is constructed by means of a finite-dimensional reduction method. Applications to solvability and bifurcations of boundary-value problems for nonlinear elliptic equations are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions. I [Russian translation], Inostrannaya Literatura, Moscow (1962).

    Google Scholar 

  2. P. S. Aleksandrov, Introduction to Set Theory and General Topology [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  3. P. A. Aleksandrjan and È. A. Mirzahanjan, General Topology [in Russian], Vyssh. Shkola, Moscow (1979).

    Google Scholar 

  4. D. Arlt, “Zusammenziehbarkeit der allgemeinen linearen Gruppe des Raumes c 0 der Nullfolgen,” Invent. Math., 1, 36–44 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  5. D. V. Beklemishev, Supplementary Chapters in Linear Algebra [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  6. P. Benevieri and M. Furi, “A simple notion of orientablity for Fredholm maps of index zero between Banach manifolds and degree theory,” Ann. Sci. Math. Quebec, 22, No. 2, 131–148 (1998).

    MATH  MathSciNet  Google Scholar 

  7. P. Benevieri and M. Furi, “On the concept of orientability for Fredholm maps betweeen real Banach manifolds,” Topol. Methods Nonlinear Anal., 16, 279–306 (2000).

    MATH  MathSciNet  Google Scholar 

  8. P. Benevieri and M. Furi, “A degree theory for locally compact perturbations of Fredholm maps in Banach spaces,” Abstr. Appl. Anal., Art ID 64764 (2006).

  9. E. Berkson, “Some metrics on the subspaces of a Banach space,” Pacific J. Math., 13, 7–22 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Bonic and J. Frampton, “Smooth functions on Banach manifolds,” J. Math. Mech., 15, No. 3, 877–897 (1966).

    MATH  MathSciNet  Google Scholar 

  11. Yu. Borisovich, N. Bliznyakov, Ya. Izrailevich, and T. N. Fomenko, Introduction to Topology [in Russian], Vyssh. Shkola, Moscow (1980).

    Google Scholar 

  12. Yu.G. Borisovich, V.G. Zvyagin, and Yu. I. Sapronov, “Nonlinear Fredholm mappings, and Leray–Schauder theory,” Uspekhi Mat. Nauk, 32, No.4(196), 3–54 (1977).

  13. R. Caccioppoli, “Sulle corrispondenze funzionali inverse diramate: teoria generale e applicazioni ad alcune equazioni non lineari e al problema di Plateau. I, II” Rend. Accad. Lincei., 24, 258–263, 416–421 (1936).

    MATH  Google Scholar 

  14. H. Cartan, Differential Calculus. Differential Forms [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  15. A. V. Chernavsky and S.V. Matveev, Foundations of the Topology of Manifolds [in Russian], Kuban. Gos. Univ., Krasnodar (1974).

    Google Scholar 

  16. J. Dieudonné, Foundations of Modern Analysis [Russian translation], Mir, Moscow (1964).

    Google Scholar 

  17. V.T. Dmitrienko and V.G. Zvyagin, “Homotopy classification of a class of continuous mappings,” Mat. Zametki, 31, No. 5, 801–812 (1982).

    MATH  MathSciNet  Google Scholar 

  18. A. Douady, “Un espace de Banach dont le groupe linéaire n’est pas connexe,” Indag. Math., 68, 787–789 (1965).

    MATH  MathSciNet  Google Scholar 

  19. B. A. Dubrovin, S.P. Novikov, and A.T. Fomenko, Modern Geometry [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  20. R. E. Edwards, Functional Analysis. Theory and Applications [Russian translation], Mir, Moscow (1969).

    Google Scholar 

  21. J. Eells and K.D. Elworthy, “Open embeddings of certain Banach manifolds,” Ann. of Math., 91, No. 3, 465–485 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  22. K. D. Elworthy and A. J. Tromba, “Differential structures and Fredholm maps on Banach manifolds,” Proc. Sympos. Pure Math. (Global Analysis), 15, 45–94 (1970).

    Article  MathSciNet  Google Scholar 

  23. K. D. Elworthy and A. J. Tromba, “Degree theory on Banach manifolds,” Proc. Sympos. Pure Math., 18, 86–94 (1970).

    Article  MathSciNet  Google Scholar 

  24. L. C. Evans, Partial differential equations, American Mathematical Society, Providence, RI (2011).

    Google Scholar 

  25. D.K. Faddeev, B. Z. Vulikh, and N.N. Ural’tseva, Selected Chapters of Analysis and Higher Algebra. Textbook [in Russian], Izdat. Leningrad. Gos. Univ., Leningrad (1981).

    Google Scholar 

  26. G. Fichtengoltz and L. Kantorovitch, “Sur les opérations dans l’espace des fonctions bornées,” Studia Math., 5, 69–98 (1934).

    Google Scholar 

  27. P. M. Fitzpatric, J. Pejsachovicz, and P. J. Rabier, “The degree of proper C 2-Fredholm mappings. I,” J. Reine Angew. Math., 427, 1–33 (1992).

    MathSciNet  Google Scholar 

  28. H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin (1974).

    MATH  Google Scholar 

  29. K. Gęba, “On the Homotopy Groups of GLc(E),Bull. de L’Académie Polonaise des Sciences. Série des Sciences Math., Astr. et Phys., 16, No. 9, 699–702 (1968).

    MATH  Google Scholar 

  30. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin (2001).

    MATH  Google Scholar 

  31. A.Ya. Helemskii, Lectures and Exercises on Functional Analysis, American Mathematical Society, Providence, RI (2006).

    MATH  Google Scholar 

  32. M. Hirsch, Differential Topology [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  33. C. A. Isnard, “The topological degree on Banach manifolds,” Global Analysis and its Applications (Internat. Summer Course, Trieste; IAEA, Vienna), 2 291–313 (1972).

    Google Scholar 

  34. M. I. Kadec and B. S.Mityagin, “Complemented subspaces in Banach spaces,” Uspekhi Mat. Nauk, 28, No. 6(174), 77–94 (1973).

  35. L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  36. J. L. Kelley, General Topology [Russian translation], Nauka, Moscow (1968).

    Google Scholar 

  37. A. N. Kolmogorov and S.V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  38. M. A. Krasnosel’skiĭ and P. P. Zabreĭko, Geometric Methods of Nonlinear Analysis [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  39. S. G. Kreĭn, Linear Equations in a Banach Space [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  40. N. H. Kuiper, “The homotopy type of the unitary group of Hilbert space,” Topology, 3, 19–30 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  41. S. Lang, Introduction to Differentiable Manifolds [Russian translation], Platon, Volgograd (1996).

    Google Scholar 

  42. E.B. Leach and J.H.M. Whitfield, “Differentiable functions and rough norms on Banach spaces,” Proc. Amer. Math. Soc., 33, No. 1, 120–126 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  43. J. Leray and J. Schauder, “Topologie et équations fonctionnelles,” Ann. Sci. Ecole Norm. Sup., Ser.3, 51, 45–78 (1934).

    MathSciNet  Google Scholar 

  44. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, 1. Sequence Spaces, Springer–Verlag, Berlin (1977).

    Google Scholar 

  45. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. 1 [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  46. J. Mawhin, “A Leray–Schauder degree: a half century of extension and applications,” Topol. Meth. Nonlin. Anal., 14, 195-228 (1999).

    MATH  MathSciNet  Google Scholar 

  47. V. G. Maz’ya, Sobolev Spaces [in Russian], Leningrad. Univ., Leningrad (1985).

    Google Scholar 

  48. J. Milnor and A. Wallace, Differential Topology: a First Course [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  49. C. Miranda, Partial Differential Equations of Elliptic Type [Russian translation], Inostrannaya Literatura, Moscow (1957).

    Google Scholar 

  50. J.R. Munkres, “Elementary differential topology,” Characteristic Classes by J. W. Milnor and J. Stasheff [Russian translation], Mir, Moscow (1979), 270–359.

  51. G. Neubauer, On a Class of Sequence Spaces with Contractible Linear Group, Notes. University of California, Berkeley (1957).

  52. S. M. Nikol’skii, Approximation of Functions of Several Variables and Imbedding Theorems [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  53. L. Nirenberg, Lectures on Nonlinear Functional Analysis [Russian translation], Mir, Moscow (1977).

    Google Scholar 

  54. R. Palais et. al., Seminar on the Atiyah–Singer Index Theorem [Russian translation], Mir, Moscow (1970).

    Google Scholar 

  55. J. Peetre, “Another approach to elliptic boundary problems,” Comm. Pure Appl. Math., 14, 711–731 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  56. J. Pejsachowicz and P. J. Rabier, “Degree theory for C 1 Fredholm mappings of index 0,J. Anal. Math., 76, 289–319 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  57. P. Rabier and M. F. Salter, “A degree theory for compact perturbations of proper C 1 Fredholm mappings of index 0,Abstr. Appl. Anal., No. 7, 707–731 (2005).

    Article  MathSciNet  Google Scholar 

  58. P. H. Rabinowitz, “A global theorem for nonlinear eigenvalue problems and applications,” Contrib. Nonlin. Funct. Anal., Academic Press, N. Y., 11–36 (1971).

  59. N.M. Ratiner, “On the theory of the degree of Fredholm mappings of a manifold,” Equations on Manifolds [in Russian], Voronezh. Gos. Univ., Voronezh, 126–129 (1982).

  60. N. M. Ratiner, On solvability of nonlinear boundary-value problems for systems of second-order ordinary differential equations [in Russian], Preprint, Voronezh (1985).

  61. N.M. Ratiner, “On the application of degree theory to the study of an oblique derivative problem,” Russian Math. (Iz. VUZ), 45, No. 4, 41–50 (2001).

    MathSciNet  Google Scholar 

  62. K. Rektoris, Variational Methods in Mathematical Physics and Engineering [Russian translation], Mir, Moscow (1985).

    Google Scholar 

  63. G. Restrepo, “Differentiable norms in Banach spaces,” Bull. Amer. Math. Soc., 70, 413–414 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  64. A. Sard, “The measure of the critical values of differentiable maps,” Bull. Amer. Math. Soc., 48, 883–890 (1942).

    Article  MATH  MathSciNet  Google Scholar 

  65. Yu. I. Sapronov, “The local invertibility of nonlinear Fredholm mappings,” Funktsional. Anal. i Prilozhen., 5, No. 4, 38–43 (1971).

    MathSciNet  Google Scholar 

  66. Yu. I. Sapronov, “Regular perturbations of a Fredholm mapping and the theorem on the odd field,” Voronež. Gos. Univ. Trudy Mat. Fak., No. 10, 82–88 (1973).

  67. Yu. I. Sapronov, “On the theory of the degree of nonlinear Fredholm mappings,” Voronež. Gos. Univ. Trudy Naučn.-Issled. Inst. Mat. VGU, 11, 92–101 (1973).

    MathSciNet  Google Scholar 

  68. L. Schwartz, Analysis. Vol. 1 [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  69. M.A. Shubin, Lectures on Equations of Mathematical Physics [in Russian], MCCME, Moscow (2003).

    Google Scholar 

  70. S. Smale, “An infinite dimensional version of Sard’s theorem,” Amer. J. Math., 87, 861–867 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  71. S.L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics [in Russian], Izdat. Leningrad. Gos. Univ., Leningrad (1950).

    Google Scholar 

  72. A. S. Švarc, “On the homotopic topology of Banach spaces,” Dokl. Akad. Nauk SSSR, 154, 61–63 (1964).

    MathSciNet  Google Scholar 

  73. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  74. A. J. Tromba, “On the number of simply connected minimal surfaces spanning a curve,” Mem. Amer. Math. Soc., 12, No. 194, (1977).

  75. A. J. Tromba, “Degree theory on oriented infinite dimensional varieties and Morse number of minimal surfaces. Part I: n > 4,Trans. Amer. Math. Soc., 290, No. 1, 385–413 (1985).

    MATH  MathSciNet  Google Scholar 

  76. V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  77. V. G. Zvyagin, “The degree of mappings that commute with p-periodic diffeomorphisms,” Voroneˇz. Gos. Univ. Trudy Mat. Fak., No. 10, 45–52 (1973).

    Google Scholar 

  78. V. G. Zvyagin, Investigation of Topological Characteristics of Nonlinear Operators, PhD Thesis, Voronezh, 1974.

  79. V. G. Zvyagin, “The existence of a continuous branch for the eigenfunctions of a nonlinear elliptic boundary value problem,” Differ. Uravn., 13, No. 8, 1524–1527 (1977).

    MATH  Google Scholar 

  80. V.G. Zvyagin, “On the number of solutions for certain boundary value problems,” Lecture Notes in Math., 1334, 157–172 (1988).

    Article  MathSciNet  Google Scholar 

  81. V.G. Zvyagin, “The degree of Fredholm mappings that are equivariant with respect to the actions of a circle and a torus,” Russian Math. Surveys, 45, No. 2, 229-230 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  82. V.G. Zvyagin, “The oriented degree of a class of perturbations of Fredholm mappings and the bifurcation of the solutions of a nonlinear boundary value problem with noncompact perturbations,” Math. USSR-Sb., 74, No. 2, 487–512 (1993).

    Article  MathSciNet  Google Scholar 

  83. V. G. Zvyagin, “On a degree theory for equivariant Φ0 C 1 BH-mappings,” Dokl. Akad. Nauk, 364, No. 2, 155–157 (1999).

    MathSciNet  Google Scholar 

  84. V. G. Zvyagin, È.M. Muhamadiev, and Yu. I. Sapronov, “On the question of the computation of the degree of nonlinear Fredholm mappings,” Voronež. Gos. Univ. Trudy Mat. Fak., No. 10, 25–44 (1973).

  85. V.G. Zvyagin and N.M. Ratiner, “The degree of completely continuous perturbations of Fredholm maps and its application to the bifurcation of solutions,” Dokl. Akad. Nauk Ukrain. SSR Ser. A, No. 6, 8–11 (1989).

  86. V.G. Zvyagin and N.M. Ratiner, “Oriented degree of Fredholm maps of non-negative index and its applications to global bifurcation of solutions,” Lecture Notes in Math., 1520, 111–137 (1992).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Zvyagin.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 44, Functional Analysis, 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvyagin, V.G., Ratiner, N.M. Oriented Degree of Fredholm Maps: Finite-Dimensional Reduction Method. J Math Sci 204, 543–714 (2015). https://doi.org/10.1007/s10958-015-2211-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-015-2211-1

Keywords

Navigation