Skip to main content
Log in

Synchronizability of Networks with Strongly Delayed Links: A Universal Classification

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We show that for large coupling delays the synchronizability of delay-coupled networks of identical units relates in a simple way to the spectral properties of the network topology. The master stability function used to determine stability of synchronous solutions has a universal structure in the limit of large delay: it is rotationally symmetric around the origin and increases monotonically with the radius in the complex plane. We give details of the proof of this structure and discuss the resulting universal classification of networks with respect to their synchronization properties. We illustrate this classification by means of several prototype network topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C.R. Mirasso, L. Pesquera, and K.A. Shore, “Chaos-based communications at high bit rates using commercial fibreoptic links,” Nature, 438, 343–346 (2005).

    Article  Google Scholar 

  2. P. Ashwin, J. Buescu, and I. Stewart, “Bubbling of attractors and synchronisation of chaotic oscillators,” Phys. Lett. A, 193, 126–139 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Ashwin, J. Buescu, and I. Stewart, “From attractor to chaotic saddle: a tale of transverse instability,” Nonlinearity, 9, No. 3, 703–737 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  4. F. M. Atay (Ed.), Complex Time-Delay Systems, Understanding Complex Systems, Springer, Berlin–Heidelberg (2010).

  5. F. M. Atay, J. Jost, and A. Wende, “Delays, connection topology, and synchronization of coupled chaotic maps,” Phys. Rev. Lett., 92, 144101 (2004).

    Article  Google Scholar 

  6. A. G. Balanov, N. B. Janson, D. E. Postnov, and O. V. Sosnovtseva, Synchronization: From Simple to Complex, Springer, Berlin (2009).

    Google Scholar 

  7. S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, “The synchronization of chaotic systems,” Phys. Rep., 366, No. 1-2, 1–101 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. S.A. Brandstetter, M.A. Dahlem, and E. Schöll, “Interplay of time-delayed feedback control and temporally correlated noise in excitable systems,” Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci, 368, No. 1911, 391–421 (2010).

    Article  MATH  Google Scholar 

  9. T. W. Carr, I. B. Schwartz, M.Y. Kim, and R. Roy, “Delayed-mutual coupling dynamics of lasers: scaling laws and resonances,” SIAM J. Appl. Dyn. Syst., 5, No. 4, 699–725 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  10. C. U. Choe, T. Dahms, P. Hövel, and E. Schöll, “Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states,” Phys. Rev. E, 81, 025205(R) (2010).

    Article  Google Scholar 

  11. C. U. Choe, V. Flunkert, P. Hövel, H. Benner, and E. Schöll, “Conversion of stability in systems close to a Hopf bifurcation by time-delayed coupling,” Phys. Rev. E., 75, 046206 (2007).

    Article  MathSciNet  Google Scholar 

  12. P. Cvitanović, “Dynamical averaging in terms of periodic orbits,” Physica D, 83, No. 1–3, 109–123 (1995).

    Article  MathSciNet  Google Scholar 

  13. P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay, Chaos: Classical and Quantum, Niels Bohr Institute, Copenhagen (2008); http://ChaosBook.org.

  14. P. Cvitanović and G. Vattay, “Entire Fredholm determinants for evaluation of semiclassical and thermodynamical spectra,” Phys. Rev. Lett., 71, No. 25, 4138–4141 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. A. Dahlem, G. Hiller, A. Panchuk, and E. Schöll, “Dynamics of delay-coupled excitable neural systems,” Int. J. Bifur. Chaos, 19, No. 2, 745–753 (2009).

    Article  MATH  Google Scholar 

  16. M. Dhamala, V.K. Jirsa, and M. Ding, “Enhancement of neural synchrony by time delay,” Phys. Rev. Lett., 92, 074104 (2004).

    Article  Google Scholar 

  17. O. D’Huys, R. Vicente, T. Erneux, J. Danckaert, and I. Fischer, “Synchronization properties of network motifs: Influence of coupling delay and symmetry,” Chaos, 18, 037116 (2008).

    Article  MathSciNet  Google Scholar 

  18. A. Englert, W. Kinzel, Y. Aviad, M. Butkovski, I. Reidler, M. Zigzag, I. Kanter, and M. Rosenbluh, “Zero lag synchronization of chaotic systems with time delayed couplings,” Phys. Rev. Lett., 104, 114102 (2010).

    Article  Google Scholar 

  19. H. Erzgräber, B. Krauskopf, and D. Lenstra, “Compound laser modes of mutually delay-coupled lasers,” SIAM J. Appl. Dyn. Syst., 5, No. 1, 30–65 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  20. I. Fischer, Y. Liu, and P. Davis, “Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication,” Phys. Rev. A (3), 62, 011801 (2000).

    Article  Google Scholar 

  21. I. Fischer, R. Vicente, J.M. Buldú, M. Peil, C. R. Mirasso, M.C. Torrent, and J. García-Ojalvo, “Zero-lag long-range synchronization via dynamical relaying,” Phys. Rev. Lett., 97, 123902 (2006).

    Article  Google Scholar 

  22. V. Flunkert, Delay-Coupled Complex Systems, Springer, Heidelberg (2011).

    Book  MATH  Google Scholar 

  23. V. Flunkert, O. D’Huys, J. Danckaert, I. Fischer, and E. Schöll, “Bubbling in delay-coupled lasers,” Phys. Rev. E, 79, 065201(R) (2009).

    Article  Google Scholar 

  24. V. Flunkert, S. Yanchuk, T. Dahms, and E. Schöll, “Synchronizing distant nodes: a universal classification of networks,” Phys. Rev. Lett., 105, 254101 (2010).

    Article  Google Scholar 

  25. D. J. Gauthier and J.C. Bienfang, “Intermittent loss of synchronization in coupled chaotic oscillators: Toward a new criterion for high-quality synchronization,” Phys. Rev. Lett., 77, No. 9, 1751–1754 (1996).

    Article  Google Scholar 

  26. G. Giacomelli and A. Politi, “Relationship between delayed and spatially extended dynamical systems,” Phys. Rev. Lett., 76, No. 15, 2686–2689 (1996).

    Article  Google Scholar 

  27. C. Grebogi, E. Ott, and J.A. Yorke, “Unstable periodic orbits and the dimensions of multifractal chaotic attractors,” Phys. Rev. A, 37, No. 5, 1711–1724 (1988).

    Article  MathSciNet  Google Scholar 

  28. C. Hauptmann, O. Omel’chenko, O.V. Popovych, Y. Maistrenko, and P.A. Tass, “Control of spatially patterned synchrony with multisite delayed feedback,” Phys. Rev. E, 76, 066209 (2007).

    Article  MathSciNet  Google Scholar 

  29. T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäser, “On/off phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron, 38, No. 9, 1162–1170 (2002).

    Article  Google Scholar 

  30. S. Heiligenthal, T. Dahms, S. Yanchuk, T. Jüngling, V. Flunkert, I. Kanter, E. Schöll, and W. Kinzel, “Strong and weak chaos in nonlinear networks with time-delayed couplings,” Phys. Rev. Lett., 107, 234102 (2011).

    Article  Google Scholar 

  31. K. Hicke, O. D’Huys, V. Flunkert, E. Schöll, J. Danckaert, and I. Fischer, “Mismatch and synchronization: Influence of asymmetries in systems of two delay-coupled lasers,” Phys. Rev. E, 83, 056211 (2011).

    Article  Google Scholar 

  32. P. Hövel, M.A. Dahlem, T. Dahms, G. Hiller, and E. Schöll, “Time-delayed feedback control of delay-coupled neurosystems and lasers,” in Preprints of the Second IFAC meeting related to analysis and control of chaotic systems (CHAOS09), arXiv:0912.3395 (2009).

  33. P. Hövel, M.A. Dahlem, and E. Schöll, “Control of synchronization in coupled neural systems by time-delayed feedback,” Int. J. Bifur. Chaos, 20, No. 3, 813–825 (2010).

    Article  MATH  Google Scholar 

  34. L. Illing, C. D. Panda, and L. Shareshian, “Isochronal chaos synchronization of delay-coupled optoelectronic oscillators,” Phys. Rev. E, 84, 016213 (2011).

    Article  Google Scholar 

  35. W. Just, A. Pelster, M. Schanz, and E. Schöll (Eds.), “Delayed complex systems,” Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci., 368, No. 1911, 303-304 (2010).

  36. D. M. Kane and K.A. Shore (Editors), Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers, Wiley VCH, Weinheim (2005).

    Google Scholar 

  37. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photon., 4, 58–61 (2009).

    Article  Google Scholar 

  38. I. Kanter, E. Kopelowitz, and W. Kinzel, “Public channel cryptography: chaos synchronization and Hilbert’s tenth problem,” Phys. Rev. Lett., 101, 084102 (2008).

    Article  Google Scholar 

  39. W. Kinzel, A. Englert, and I. Kanter, “On chaos synchronization and secure communication,” Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci, 368, 379–389 (2010).

    Article  MATH  Google Scholar 

  40. W. Kinzel, A. Englert, G. Reents, M. Zigzag, and I. Kanter, “Synchronization of networks of chaotic units with time-delayed couplings,” Phys. Rev. E, 79, 056207 (2009).

    Article  Google Scholar 

  41. W. Kinzel and I. Kanter, Secure communication with chaos synchronization, Handbook of Chaos Control, Wiley-VCH, Weinheim (2008).

    Google Scholar 

  42. E. Klein, N. Gross, M. Rosenbluh, W. Kinzel, L. Khaykovich, and I. Kanter, “Stable isochronal synchronization of mutually coupled chaotic lasers,” Phys. Rev. E, 73, 066214 (2006).

    Article  Google Scholar 

  43. Y.C. Lai, Y. Nagai, and C. Grebogi, “Characterization of the natural measure by unstable periodic orbits in chaotic attractors,” Phys. Rev. Lett., 79, No. 4, 649–652 (1997).

    Article  Google Scholar 

  44. A. S. Landsman and I.B. Schwartz, “Complete chaotic synchronization in mutually coupled timedelay systems,” Phys. Rev. E, 75, 026201 (2007).

    Article  Google Scholar 

  45. J. Lehnert, Dynamics of Neural Networks with Delay, Master’s thesis, Technische Universit¨at Berlin (2010).

  46. J. Lehnert, T. Dahms, P. Hövel, and E. Schöll, “Loss of synchronization in complex neural networks with delay,” Europhys. Lett., 96, 60013 (2011).

    Article  Google Scholar 

  47. M. Lichtner, M. Wolfrum, and S. Yanchuk, “The spectrum of delay differential equations with large delay,” SIAM J. Math. Anal., 43, No. 2, 788–802 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  48. K. Lüdge (Ed.), Nonlinear Laser Dynamics — From Quantum Dots to Cryptography, WILEYVCH, Weinheim (2011).

  49. C. Masoller, M. C. Torrent, and J. García-Ojalvo, “Interplay of subthreshold activity, time-delayed feedback, and noise on neuronal firing patterns,” Phys. Rev. E, 78, 041907 (2008).

    Article  Google Scholar 

  50. E. Mosekilde, Y. Maistrenko, and D. Postnov, Chaotic Synchronization: Applications to Living Systems, World Scientific, Singapore (2002).

    Google Scholar 

  51. J. Mulet, C. R. Mirasso, T. Heil, and I. Fischer, “Synchronization scenario of two distant mutually coupled semiconductor lasers,” J. Opt. B, 6, 97–105 (2004).

    Article  Google Scholar 

  52. Y. Nagai and Y.C. Lai, “Periodic-orbit theory of the blowout bifurcation,” Phys. Rev. E, 56, No. 4, 4031–4041 (1997).

    Article  MathSciNet  Google Scholar 

  53. E. Ott and J. C. Sommerer, “Blowout bifurcations: the occurrence of riddled basins and on-off intermittency,” Phys. Lett. A, 188, No. 1, 39–47 (1994).

    Article  Google Scholar 

  54. L. M. Pecora and M. Barahona, “Synchronization of Oscillators in Complex Networks,” In: F. F. Orsucci and N. Sala (Eds.), New Research on Chaos and Complexity, Chap. 5, 65–96, Nova Science Publishers (2006).

  55. L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett., 64, No. 8, 821–824 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  56. L. M. Pecora and T. L. Carroll, “Master stability functions for synchronized coupled systems,” Phys. Rev. Lett., 80, No. 10, 2109–2112 (1998).

    Article  Google Scholar 

  57. A. S. Pikovsky, M.G. Rosenblum, and J. Kurths, Synchronization, A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge (2001).

    Book  MATH  Google Scholar 

  58. E. Rossoni, Y. Chen, M. Ding, and J. Feng, “Stability of synchronous oscillations in a system of Hodgkin–Huxley neurons with delayed diffusive and pulsed coupling,” Phys. Rev. E, 71, 061904 (2005).

    Article  MathSciNet  Google Scholar 

  59. M. Sauer and F. Kaiser, “On-off intermittency and bubbling in the synchronization break-down of coupled lasers,” Phys. Lett. A, 243, No. 1-2, 38–46 (1998).

    Article  Google Scholar 

  60. E. Schöll and H.G. Schuster (Eds.), Handbook of Chaos Control, Wiley-VCH, Weinheim (2008).

  61. E. Schöll, G. Hiller, P. Hövel, and M. A. Dahlem, “Time-delayed feedback in neurosystems,” Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci, 367, No. 1891, 1079–1096 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  62. L. B. Shaw, I. B. Schwartz, E.A. Rogers, and R. Roy, “Synchronization and time shifts of dynamical patterns for mutually delay-coupled fiber ring lasers,” Chaos, 16, 015111 (2006).

    Article  Google Scholar 

  63. J. Sieber, M. Wolfrum, M. Lichtner, and S. Yanchuk, “On the stability of periodic orbits in delay equations with large delay,” Discrete Contin. Dyn. Syst., 33, No. 7 (2013); arXiv:1101.1197. To appear.

  64. A. Takamatsu, R. Tanaka, H. Yamada, T. Nakagaki, T. Fujii, and I. Endo, “Spatiotemporal symmetry in rings of coupled biological oscillators of physarum plasmodial slime mold,” Phys. Rev. Lett., 87, 078102 (2001).

    Article  Google Scholar 

  65. J. R. Terry, K. S. Thornburg, D. J. DeShazer, G.D. VanWiggeren, S. Zhu, P. Ashwin, and R. Roy, “Synchronization of chaos in an array of three lasers,” Phys. Rev. E, 59, No. 4, 4036–4043 (1999).

    Article  Google Scholar 

  66. R. Vicente, L. L. Gollo, C.R. Mirasso, I. Fischer, and P. Gordon, “Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays,” Proc. Natl. Acad. Sci., 105, 17157 (2008).

    Article  Google Scholar 

  67. R. Vicente, C.R. Mirasso, and I. Fischer, “Simultaneous bidirectional message transmission in a chaos-bases communication scheme,” Opt. Lett., 32, No. 4, 403–405 (2007).

    Article  Google Scholar 

  68. M. Wolfrum and S. Yanchuk, “Eckhaus instability in systems with large delay,” Phys. Rev. Lett., 96, 220201 (2006).

    Article  Google Scholar 

  69. H. J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäser, and I. Fischer, “Synchronization of delay-coupled oscillators: A study of semiconductor lasers,” Phys. Rev. Lett., 94, 163901 (2005).

    Article  Google Scholar 

  70. S. Yanchuk and P. Perlikowski, “Delay and periodicity,” Phys. Rev. E, 79, 046221 (2009).

    Article  MathSciNet  Google Scholar 

  71. S. Yanchuk and M. Wolfrum, “Instabilities of equilibria of delay-differential equations with large delay,” In: Proc. 5th EUROMECH Nonlinear Dynamics Conference ENOC-2005, Eindhoven (Eindhoven University of Technology, Eindhoven, Netherlands), 1060–1065, eNOC Eindhoven (CD ROM), ISBN 90 386 2667 3 (2005).

  72. S. Yanchuk, M. Wolfrum, P. Hövel, and E. Schöll, “Control of unstable steady states by long delay feedback,” Phys. Rev. E, 74, 026201 (2006).

    Article  MathSciNet  Google Scholar 

  73. M. A. Zaks and D. S. Goldobin, Comment on “Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems,” Phys. Rev. E, 81, 018201 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Flunkert.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 48, Proceedings of the Sixth International Conference on Differential and Functional Differential Equations and International Workshop “Spatio-Temporal Dynamical Systems” (Moscow, Russia, 14–21 August, 2011). Part 4, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flunkert, V., Yanchuk, S., Dahms, T. et al. Synchronizability of Networks with Strongly Delayed Links: A Universal Classification. J Math Sci 202, 809–824 (2014). https://doi.org/10.1007/s10958-014-2078-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-2078-6

Keywords

Navigation