Skip to main content
Log in

Groups Acting on Necklaces and Sandpile Groups

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We introduce a group naturally acting on aperiodic necklaces of length n with two colors using a one-to-one correspondence between such necklaces and irreducible polynomials of degree n over the field F2 of two elements. We notice that this group is isomorphic to the quotient group of nondegenerate circulant matrices of size n over that field modulo a natural cyclic subgroup. Our groups turn out to be isomorphic to the sandpile groups for a special sequence of directed graphs. Bibliography: 15 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. van Aardenne-Ehrenfest and N. G. de Bruijn, “Circuits and trees in oriented linear graphs,” Simon Stevin, 28, 203–217 (1951).

    MATH  MathSciNet  Google Scholar 

  2. V. I. Arnold, “From Hilbert’s superposition problem to dynamical dystems,” transcript of a lecture given at the Fields Institute (1997); http://www.pdmi.ras.ru/~arnsem/Arnold/arnlect1.ps.gz.

  3. S. H. Chan, Bachelor’s Thesis, NTU, Singapore (2012).

    Google Scholar 

  4. S. H. Chan, H. D. L. Hollmann, and D. V. Pasechnik, “Critical groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields,” in: J. Nešetřil and M. Pellegrini (eds.), Proceedings of EuroComb 2013, The Seventh European Conference on Combinatorics, Graph Theory and Applications, Springer (2013); ISBN 978-88-7642-474-8.

  5. S. Chmutov, S. Duzhin, and J. Mostovoy, Introduction to Vassiliev Knot Invariants, Cambridge Univ. Press, Cambridge (2012); draft version: http://www.pdmi.ras.ru/~duzhin/papers/cdbook.

  6. S. Duzhin, “An explicit expansion of the Drinfeld associator up to degree 12,” web publication http://www.pdmi.ras.ru/~arnsem/dataprog.

  7. S. W. Golomb, “Irreducible polynomials, synchronization codes, primitive necklaces and the cyclotomic algebra,” in: Combinatorial Mathematics and Its Applications (Proc. Conf. Univ. North Carolina), Univ. North Carolina Press, Chapel Hill (1969), pp. 358–370.

    Google Scholar 

  8. M. E. Hoffman, “The algebra of multiple harmonic series,” J. Algebra, 194, 477–495 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Levine, “Sandpile groups and spanning trees of directed line graphs,” J. Combin. Theory, Ser. A, 118, No. 2, 350–364 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Levine and J. Propp, “What is . . . a sandpile?” Notices Amer. Math. Soc., 57, No. 8, 976–979 (2010).

    MATH  MathSciNet  Google Scholar 

  11. R. Lidl and H. Niederreiter, Finite Fields, Cambridge Univ. Press, Cambridge (2008).

    MATH  Google Scholar 

  12. Ch. Reutenauer, Free Lie Algebras, The Clarendon Press, New York (1993).

    MATH  Google Scholar 

  13. “Computer algebra system Sage,” http://www.sagemath.org.

  14. N. J. A. Sloane, “Online encyclopaedia of integer sequences,” http://oeis.org/.

  15. E. Witt, “Treue Darstellung Liescher Ringe,” J. reine angew. Math., 177, 152–160 (1937).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Duzhin or D. V. Pasechnik.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 421, 2014, pp. 81–93.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duzhin, S.V., Pasechnik, D.V. Groups Acting on Necklaces and Sandpile Groups. J Math Sci 200, 690–697 (2014). https://doi.org/10.1007/s10958-014-1960-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-1960-6

Keywords

Navigation