Skip to main content
Log in

A Compendium of Lie Structures on Tensor Products

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

It is demonstrated how a simple linear-algebraic technique used earlier to compute the low-degree cohomology of current Lie algebras, can be utilized to compute other kinds of structures on such Lie algebras, and discuss further generalizations, applications, and related questions. While doing so, seemingly diverse topics are touched upon such as associative algebras of infinite representation type, Hom-Lie structures, Poisson brackets of hydrodynamic type, Novikov algebras, simple Lie algebras in small characteristics, and Koszul dual operads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bai and D. Meng, “The classification of Novikov algebras in low dimensions,” J. Phys. A, 34, 1581–1594 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Bai, D. Meng, and L. He, “On fermionic Novikov algebras,” J. Phys. A, 35, 10053–10063 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  3. A. A. Balinskii and S. P. Novikov, “Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras,” Dokl. Akad. Nauk SSSR, 283, 1036–1039 (1985).

    MathSciNet  Google Scholar 

  4. G. Benkart and E. Neher, “The centroid of extended affine and root graded Lie algebras,” J. Pure Appl. Algebra, 205, 117–145 (2006); arXiv:math/0502561.

  5. G. Benkart and J. M. Osborn, “Flexible Lie-admissible algebras,” J. Algebra, 71, 11–31 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  6. F. A. Berezin, Introduction to Superanalysis, 2nd revised ed. with an appendix Seminar on Supersymmetry. Vol. 11 2 (ed. D. Leites), MCCME, to appear (in Russian).

  7. S. Bouarroudj, A. Lebedev, D. Leites, and I. Shchepochkina, “Deforms of Lie algebras in characteristic 2: semi-trivial for Jurman algebras, non-trivial for Kaplansky algebras”, arXiv:1301.2781v1.

  8. N. Bourbaki, Lie Groups and Lie Algebras, Chaps. 1–3, Springer (1989).

  9. J. L. Cathelineau, “Homologie de degré trois d’algèbres de Lie simple déployées étendues à une algèbre commutative,” Enseign. Math., 33, 159–173 (1987).

    MATH  MathSciNet  Google Scholar 

  10. A. S. Dzhumadil’daev, “Abelian extensions of modular Lie algebras”, Algebra Logika, 24 3–12 (1985); Correction: 28, 241 (1989).

  11. A. S. Dzhumadil’daev, “Cohomology of truncated coinduced representations of Lie algebras of positive characteristic,” Mat. Sbornik, 180, 456–468 (1989).

    MATH  Google Scholar 

  12. A. S. Dzhumadil’daev, “Codimension growth and non-Koszulity of Novikov operad,” Comm. Algebra, 39, 2943–2952 (2011); loosely corresponds to arXiv:0902.3187 + arXiv:0902.3771.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Farnsteiner and H. Strade, “Shapiro’s lemma and its consequences in the cohomology theory of modular Lie algebras,” Math. Z., 206, 153–168 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Feldvoss and H. Strade, “Restricted Lie algebras with bounded cohomology and related classes of algebras, ” Manuscr. Math., 74, 47–67 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  15. I. M. Gelfand and I. Ya. Dorfman, “Hamiltonian operators and algebraic structures related to them,” Funkts. Anal. Prilozh., 13, No. 4, 13–30 (1979).

    MathSciNet  Google Scholar 

  16. I. M. Gelfand and V. A. Ponomarev, “Indecomposable representations of the Lorentz group,” Uspekhi Mat. Nauk, 140, No. 2, 3–60 (1968).

    MathSciNet  Google Scholar 

  17. V. Ginzburg and M. Kapranov, “Koszul duality for operads,” Duke Math. J., 76, 203–272 (1994); Erratum: 80 (1995), 293; arXiv:0709.1228.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Grishkov, “On simple Lie algebras over a field of characteristic 2,” J. Algebra, 363, 14–18 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Grozman, D. Leites, and I. Shchepochkina, “Lie superalgebras of string theories,” Acta Math. Vietnam., 26, 27–63 (2001); arXiv:hep-th/9702120.

    MATH  MathSciNet  Google Scholar 

  20. H. G¨undo˘gan, “Lie algebras of smooth sections”, Diploma Thesis, Technische Univ. Darmstadt (2007); arXiv:0803.2800v4.

  21. J. Hartwig, D. Larsson, and S. Silvestrov, “Deformations of Lie algebras using σ-derivations,” J. Algebra, 295, 314–361 (2006); arXiv:math/0408064.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Heller and I. Reiner, “Indecomposable representations,” Illinois J. Math., 5, 314–323 (1961).

    MATH  MathSciNet  Google Scholar 

  23. N. Jacobson, Lie Algebras, Dover (1979).

  24. K. Jeong, S.-J. Kang, and H. Lee, “Lie-admissible algebras and Kac-Moody algebras,” J. Algebra, 197, 492–505 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  25. Q. Jin and X. Li, “Hom-Lie algebra structures on semi-simple Lie algebras,” J. Algebra, 319, 1398–1408 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  26. G. Jurman, “A family of simple Lie algebras in characteristic two,” J. Algebra, 271, 454–481 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  27. V. G. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge Univ. Press (1995).

  28. V. G. Kac and J. W. van de Leur, “On classification of superconformal algebras”, in: Strings ‘88 (eds. S. J. Gates, C. R. Preitschopf, and W. Siegel), World Scientific (1989), pp. 77–106.

  29. Ya. S. Krylyuk, “On automorphisms and isomorphisms of quasi-simple Lie algebras,“ bItogi Nauki Tekhn., 58 (1998).

  30. F. Kubo, “Non-commutative Poisson algebra structures on affine Kac-Moody algebras,” J. Pure Appl. Algebra, 126, 267–286 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  31. F. Kubo, “Compatible algebra structures of Lie algebras,” in: Ring Theory 2007 (ed. H. Marubayashi et al.), World Scientific (2008), pp. 235–239.

  32. P. B. A. Lecomte and C. Roger, “Rigidity of current Lie algebras of complex simple Lie type,” J. London Math. Soc., 37, 232–240 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  33. L. A. Nazarova, A. V. Roiter, V. V. Sergeichuk, and V. M. Bondarenko, “Application of modules over a dyad for the classification of finite p-groups possessing an Abelian subgroup of index p and of pairs of mutually annihilating operators,” Zap. Nauchn. Semin. LOMI, 28, 69–92 (1972).

    Google Scholar 

  34. Y. Pei and C. Bai, “Realizations of conformal current-type Lie algebras,” J. Math. Phys., 51, 052302 (2010).

    Article  MathSciNet  Google Scholar 

  35. Y. Pei and C. Bai, “Novikov algebras and Schr¨odinger-Virasoro Lie algebras,” J. Phys. A, 44, 045201 (2011).

    Article  MathSciNet  Google Scholar 

  36. H. Strade, Lie Algebras over Fields of Positive Characteristic. I. Structure Theory, de Gruyter (2004).

  37. P. Zusmanovich, “Low-dimensional cohomology of current Lie algebras and analogs of the Riemann tensor for loop manifolds,” Lin. Algebra Appl., 407, 71–104 (2005); arXiv:math/0302334.

    Article  MATH  MathSciNet  Google Scholar 

  38. P. Zusmanovich, “A converse to the Whitehead Theorem,” J. Lie Theory, 18, 811–815 (2008); arXiv:0808.0212.

    MATH  MathSciNet  Google Scholar 

  39. P. Zusmanovich, “Invariants of current Lie algebras extended over commutative algebras without unit,” J. Nonlin. Math. Phys., 17, 87–102 (2010), Suppl. 1 (special issue in memory of F.A. Berezin); arXiv:0901.1395.

    Article  MathSciNet  Google Scholar 

  40. P. Zusmanovich, “Non-existence of invariant symmetric forms on generalized Jacobson–Witt algebras revisited,” Comm. Algebra, 39, 548–554 (2011); arXiv:0902.0038.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zusmanovich.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 414, 2013, pp. 40–81.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zusmanovich, P. A Compendium of Lie Structures on Tensor Products. J Math Sci 199, 266–288 (2014). https://doi.org/10.1007/s10958-014-1855-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-1855-6

Keywords

Navigation