Skip to main content
Log in

On the Asymptotic Distribution of Singular Values of Powers of Random Matrices

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider powers of random matrices with independent entries. Let X ij , i, j ≥ 1, be independent complex random variables with E X ij = 0 and E|X ij |2 = 1, and let X denote an n × n matrix with |X|ijX ij for 1 ≤ i, jn. Denote by \( s_1^{(m)}\geq \ldots \geq s_n^{(m) } \) the singular values of the random matrix \( \mathbf{W}:={n^{{-\frac{m}{2}}}}{{\mathbf{X}}^m} \) and define the empirical distribution of the squared singular values by

$$ \mathcal{F}_n^{(m) }(x)=\frac{1}{n}\sum\limits_{k=1}^n {{I_{{\left\{ {s_k^{{{(m)^2}}}\leq x} \right\}}}}}, $$

where I {B} denotes the indicator of an event B. We prove that the expected spectral distribution \( F_n^{(m) }(x)=\mathbf{E}\mathcal{F}_n^{(m) }(x) \) converges under the Lindeberg condition to the distribution function G (m)(x) defined by its moments

$$ {\alpha_k}(m)\;:=\int\limits_{\mathbb{R}} {{x^k}dG(x)} =\frac{1}{mk+1}\left( {\begin{array}{*{20}{c}} {km+k} \\ k \\ \end{array}} \right). $$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Oravecz, “On the powers of Voiculescu’s circular element,” Studia Math., 145, 85–95 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  2. T. Banica, S. Belinschi, M. Capitaine, and B. Collins, “Free Bessel laws,” Preprint arXiv:0710.5931.

  3. J. A. Mingo and R. Speicher, “Sharp bounds for sums associated to graphs of matrices,” Preprint arXiv:0909.4277.

  4. N. V. Alexeev, F. Götze, and A. N. Tikhomirov, “On the singular spectrum of degrees and products of random matrices,” Dokl. Ros. Akad. Nauk, 433, 7–9 (2010).

    Google Scholar 

  5. N. Alexeev, F. Götze, and A. N. Tikhomirov, “On the asymptotic distribution of singular values of powers of random matrices,” Lithuan. Math. J., 50, 121–132 (2010).

    Article  MATH  Google Scholar 

  6. Z. D. Bai and J. W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices, 2nd ed., Springer (2010).

  7. J. B. Conway, Functions of One Complex Variable. I, 2nd ed., Springer-Verlag, Berlin (1995).

    Book  Google Scholar 

  8. V. L. Girko, “Spectral theory of random matrices,” Usp. Mat. Nauk, 40, 67–106 (1985).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Alexeev.

Additional information

Translate from Zapiski Nauchnykh Seminarov POMI, Vol. 408, 2012, pp. 9–42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexeev, N.V., Götze, F. & Tikhomirov, A.N. On the Asymptotic Distribution of Singular Values of Powers of Random Matrices. J Math Sci 199, 68–87 (2014). https://doi.org/10.1007/s10958-014-1834-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-1834-y

Keywords

Navigation