Skip to main content
Log in

Abstract

In this paper, we study three fixed point problems. The first one is a fixed point problem with a set-valued mapping, while the second and third problems are convex feasibility problems with infinitely many constraints solved by the subgradient projection algorithm. We show that an approximate solution is reached after a finite number of iterations under the presence of computational errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

My paper has no associated data.

References

  1. Butnariu, D., Davidi, R., Herman, G.T., Kazantsev, I.G.: Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems. IEEE J. Sel. Top. Signal Process. 1, 540–547 (2007)

    Article  Google Scholar 

  2. Censor, Y., Davidi, R., Herman, G.T.: Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 26, 065008 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Censor, Y., Davidi, R., Herman, G.T., Schulte, R.W., Tetruashvili, L.: Projected subgradient minimization versus superiorization. J. Optim. Theory Appl. 160, 730–747 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Censor, Y., Elfving, T., Herman, G.T.: Averaging strings of sequential iterations for convex feasibility problems. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, pp. 101–113. North-Holland, Amsterdam (2001)

    Chapter  MATH  Google Scholar 

  5. Censor, Y., Reem, D.: Zero-convex functions, perturbation resilience, and subgradient projections for feasibility-seeking methods. Math. Program. 152, 339–380 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Censor, Y., Zaknoon, M.: Algorithms and convergence results of projection methods for inconsistent feasibility problems: a review. Pure Appl. Funct. Anal. 3, 565–586 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Djafari-Rouhani, B., Kazmi, K.R., Moradi, S., Ali, R., Khan, S.A.: Solving the split equality hierarchical fixed point problem. Fixed Point Theory 23, 351–369 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gibali, A.: A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2, 243–258 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Gibali, A., Reich, S., Zalas, R.: Outer approximation methods for solving variational inequalities in Hilbert space. Optimization 66, 417–437 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  11. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  12. Gurin, L.G., Poljak, B.T., Raik, E.V.: Projection methods for finding a common point of convex sets. Zhurn. Vycisl. Mat i Mat. Fiz. 7, 1211–1228 (1967)

    MathSciNet  Google Scholar 

  13. Karapinar, E., Mitrovic, Z.D., Ozturk, A., Radenovic, S.: On a theorem of Ciric in b-metric spaces. Rend. Circ. Mat. Palermo 70, 217–225 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kassab, W., Turcanu, T.: Numerical reckoning fixed points of (E)-type mappings in modular vector spaces. Mathematics (2019). https://doi.org/10.3390/math7050390

    Article  Google Scholar 

  15. Khamsi, M.A., Kozlowski, W.M.: Fixed Point Theory in Modular Function Spaces. Birkhäser/Springer, Cham (2015)

    Book  MATH  Google Scholar 

  16. Khamsi, M.A., Kozlowski, W.M., Reich, S.: Fixed point theory in modular function spaces. Nonlinear Anal. 14, 935–953 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kirk, W.A.: Contraction Mappings and Extensions. Handbook of Metric Fixed Point Theory, pp. 1–34. Kluwer, Dordrecht (2001)

    Book  Google Scholar 

  18. Kolobov, V.I., Reich, S., Zalas, R.: Finitely convergent deterministic and stochastic iterative methods for solving convex feasibility problems. Math. Program. 194, 1163–1183 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kong, T.Y., Pajoohesh, H., Herman, G.T.: String-averaging algorithms for convex feasibility with infinitely many sets. Inverse Prob. 35, 045011 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kopecka, E., Reich, S.: A note on alternating projections in Hilbert space. J. Fixed Point Theory Appl. 12, 41–47 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kubota, R., Takahashi, W., Takeuchi, Y.: Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applications. Pure Appl. Funct. Anal. 1, 63–84 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Lenzen, F., Becker, F., Lellmann, J., Petra, S., Schnörr, Ch.: A class of quasi-variational inequalities for adaptive image denoising and decomposition. Comput. Optim. Appl. 54, 371–398 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Okeke, G.A., Abbas, M., de la Sen, M.: Approximation of the fixed point of multivalued quasi-nonexpansive mappings via a faster iterative process with applications. Discrete Dyn. Nat. Soc. 2020 (2020). Article ID 8634050

  25. Okeke, G.A., Ugwuogor, C.I.: Iterative construction of the fixed point of Suzuki’s generalized nonexpansive mappings in Banach spaces. Fixed Point Theory 23, 633–652 (2022)

    Article  MathSciNet  Google Scholar 

  26. Rakotch, E.: A note on contractive mappings. Proc. Am. Math. Soc. 13, 459–465 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  27. Reich, S., Tuyen, T.M.: Projection algorithms for solving the split feasibility problem with multiple output sets. J. Optim. Theory Appl. 190, 861–878 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reich, S., Zaslavski, A.J.: Genericity in Nonlinear Analysis, Developments in Mathematics, vol. 34. Springer, New York (2014)

    Book  MATH  Google Scholar 

  29. Takahashi, W.: The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces. Pure Appl. Funct. Anal. 2, 685–699 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Takahashi, W.: A general iterative method for split common fixed point problems in Hilbert spaces and applications. Pure Appl. Funct. Anal. 3, 349–369 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Tam, M.K.: Algorithms based on unions of nonexpansive maps. Optim. Lett. 12, 1019–1027 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zaslavski, A.J.: Approximate Solutions of Common Fixed Point Problems. Springer Optimization and Its Applications. Springer, Cham (2016)

    Google Scholar 

  33. Zaslavski, A.J.: Algorithms for Solving Common Fixed Point Problems. Springer Optimization and Its Applications. Springer, Cham (2018)

    Book  Google Scholar 

  34. Zaslavski, A.J.: Solving feasibility problems with infinitely many sets. Axioms 12(3), 273 (2023). https://doi.org/10.3390/axioms12030273

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the referee for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Zaslavski.

Additional information

Communicated by Aviv Gibali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaslavski, A.J. Approximate Solutions for Three Fixed Point Problems. J Optim Theory Appl (2023). https://doi.org/10.1007/s10957-023-02313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10957-023-02313-1

Keywords

Mathematics Subject Classification

Navigation