Skip to main content

Advertisement

Log in

A Prediction–Correction ADMM for Multistage Stochastic Variational Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The multistage stochastic variational inequality is reformulated into a variational inequality with separable structure through introducing a new variable. The prediction–correction ADMM which was originally proposed in He et al. (J Comput Math 24:693–710, 2006) for solving deterministic variational inequalities in finite-dimensional spaces is adapted to solve the multistage stochastic variational inequality. Weak convergence of the sequence generated by that algorithm is proved under the conditions of monotonicity and Lipschitz continuity. When the sample space is a finite set, the corresponding multistage stochastic variational inequality is actually defined on a finite-dimensional Hilbert space and the strong convergence of the algorithm naturally holds true. Some numerical examples are given to show the efficiency of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (2009)

    Book  MATH  Google Scholar 

  2. Borwein, J., Goebel, R.: Notions of relative interior in Banach spaces. J. Math. Sci. 115, 2542–2553 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)

    Article  MATH  Google Scholar 

  4. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Springer, Berlin (1977)

  5. Chen, X., Fukushima, M.: Expected residual minimization method for stochastic linear complementarity problems. Math. Oper. Res. 30, 1022–1038 (2005)

  6. Chen, X., Pong, T.K., Wets, R.J.-B.: Two-stage stochastic variational inequalities: an ERM-solution procedure. Math. Program. 165, 71–111 (2017)

  7. Chen, X., Shapiro, A., Sun, H.: Convergence analysis of sample average approximation of two-stage stochastic generalized equations. SIAM J. Optim. 29, 135–161 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Sun, H., Xu, H.: Discrete approximation of two-stage stochastic and distributionally robust linear complementarity problems. Math. Program. 177, 255–289 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, X., Wets, R.J.-B., Zhang, Y.: Stochastic variational inequalities: residual minimization smoothing sample average approximations. SIAM J. Optim. 22, 649–673 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)

    MATH  Google Scholar 

  11. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer, New York (2003)

    MATH  Google Scholar 

  12. Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la r solution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. (French) 9, 41–76 (1975)

  13. Gürkan, G., Özge, A.Y., Robinson, S.M.: Sample-path solution of stochastic variational inequalities. Math. Program. 84, 313–333 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. He, B.S.: My 20 years research on alternating directions method of multipliers. Oper. Res. Trans. Chin. 22, 1–31 (2018)

    MathSciNet  MATH  Google Scholar 

  15. He, B.S., Liao, L.-Z., Qian, M.-J.: Alternating projection based prediction–correction methods for structured variational inequalities. J. Comput. Math. 24, 693–710 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1991)

    MATH  Google Scholar 

  17. Li, X., Zhou, X.Y., Lim, A.E.B.: Dynamic mean-variance portfolio selection with no-shorting constraints. SIAM J. Control Optim. 40, 1540–1555 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mordukhovich, B.S., Nam, N.M.: Convex Analysis and Beyond, vol. 1. Basic Theory. Springer, Cham (2022)

  19. Mu, Z., Yang, J.: Convergence analysis of a stochastic progressive hedging algorithm for stochastic programming. Stat. Optim. Inf. Comput. 8, 656–667 (2020)

    Article  MathSciNet  Google Scholar 

  20. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  21. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rockafellar, R.T., Sun, J.: Solving monotone stochastic variational inequalities and complementarity problems by progressive hedging. Math. Program. 174, 453–471 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rockafellar, R.T., Sun, J.: Solving Lagrangian variational inequalities with applications to stochastic programming. Math. Program. 181(Ser. B) 435–451 (2020)

  24. Rockafellar, R.T., Wets, R.J.-B.: Stochastic convex programming: relatively complete recourse and induced feasibility. SIAM J. Control Optim. 14, 574–589 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rockafellar, R.T., Wets, R.J.-B.: Scenario and policy aggregation in optimization under uncertainty. Math. Oper. Res. 16, 119–147 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rockafellar, R.T., Wets, R.J.-B.: Stochastic variational inequalities: single-stage to multistage. Math. Program. 165, 331–360 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming, Modeling and theory, 2nd ed. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2014)

  28. Shiryaev, A.N.: Probability. Springer, New York (1996)

    Book  MATH  Google Scholar 

  29. Sun, H., Chen, X.: Two-stage stochastic variational inequalities: theory, algorithms and applications. J. Oper. Res. Soc. China 9, 1–32 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sun, J., Xu, H., Zhang, M.: A new interpretation of the progressive hedging algorithm for multistage stochastic minimization problems. J. Ind. Manag. Optim. 16, 1655–1662 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, J., Yang, X., Yao, Q., Zhang, M.: Risk minimization, regret minimization and progressive hedging algorithms. Math. Program. 181(Ser. B), 509–530 (2020)

  32. Wang, T., Zhang, H.: Optimal control problems of forward–backward stochastic Volterra integral equations with closed control regions. SIAM J. Control Optim. 55, 2574–2602 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yong, J., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999)

    Book  MATH  Google Scholar 

  34. Zhang, M., Sun, J., Xu, H.: Two-stage quadratic games under uncertainty and their solution by progressive hedging algorithms. SIAM J. Optim. 29, 1799–1818 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Both authors would like to thank the referees and the Associate Editor for their critical comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haisen Zhang.

Additional information

Communicated by Xinmin Yang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the NSF of China under Grants 12071324 and 11931011.

Appendix A: Proof of Lemma 2.5

Appendix A: Proof of Lemma 2.5

In the appendix, we shall give the proof of Lemma 2.5. The main idea of the proof comes from [32, Lemma 4.6].

Proof

It is clear that (2.10) implies (2.9). Then we only need to prove that the converse is also true.

Define

$$\begin{aligned} A=\{\omega \in \Omega \mid \exists ~x\in C(\omega )~s.t.~\langle F(x^*)(\omega ), x-x^*(\omega )\rangle <0\}. \end{aligned}$$

To prove that  (2.10) holds, we only need to prove that  \(P(A)=0\). Let

$$\begin{aligned} G=\{(\omega ,x)\in \Omega \times R^n \mid x\in C(\omega ),~\langle F(x^*)(\omega ), x-x^*(\omega )\rangle <0\}. \end{aligned}$$

Then G is \({\mathscr {F}}\otimes {\mathscr {B}}(R^n)\)-measurable.By [4, Theorem III.23], A is \({\mathscr {F}}\)-measurable.

Take \(k,r=1,2,\cdots \), define

$$\begin{aligned} A_{k,r}=\left\{ \omega \in \Omega \mid \exists ~x\in C(\omega )\cap {\bar{B}}(0,r) ~s.t.~\langle F(x^*)(\omega ), x-x^*(\omega )\rangle \le -\frac{1}{k} \right\} \end{aligned}$$

and

$$\begin{aligned} \Phi _{k,r}(\omega )=\left\{ x\in C(\omega )\cap {\bar{B}}(0,r)\mid \langle F(x^*)(\omega ),x-x^*(\omega )\rangle \le -\frac{1}{k}\right\} . \end{aligned}$$

Here \({\bar{B}}(0,r)\) is the closed ball in \(R^n\) of center 0 and radius r. Similarly, \(A_{k,r}\) is \({\mathscr {F}}\)-measurable. In addition, \(\Phi _{k,r}\) is an \({\mathscr {F}}\)-measurable set-valued map and

$$\begin{aligned} A=\bigcup _{r=1}^{\infty }\bigcup _{k=1}^{\infty }A_{k,r}. \end{aligned}$$

To prove \(P(A)=0\), we only need to prove that for any kr, \(P(A_{k,r})=0\). Assume that there exist kr such that \(P(A_{k,r})>0\). By Lemma 2.2, there exists \(\eta \in {\mathcal {L}}^2(\Omega ,{\mathscr {F}},P)\) such that

$$\begin{aligned} \eta (\omega )\in \Phi _{k,r}(\omega ),\quad \text{ a.s. }~\omega \in A_{k,r}. \end{aligned}$$

Define \({\tilde{\eta }}=\eta \chi _{A_{k,r}}+x^* \chi _{\Omega {\setminus } A_{k,r}}\), then \({\tilde{\eta }}\in {\mathcal {C}}\), and

$$\begin{aligned} \langle F(x^*),{\tilde{\eta }}-x^*\rangle _{{\mathcal {L}}^2}&=\int _{\Omega }\langle F(x^*)(\omega ),{\tilde{\eta }}(\omega )-x^*(\omega )\rangle P(d(\omega )) \\ {}&=\int _{A_{k,r}}\langle F(x^*)(\omega ),\eta (\omega )-x^*(\omega )\rangle P(d(\omega ))\\&\le -\frac{1}{k}P(A_{k,r}) <0, \end{aligned}$$

contradicting (2.9). Thus \(P(A)=0\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Z., Zhang, H. A Prediction–Correction ADMM for Multistage Stochastic Variational Inequalities. J Optim Theory Appl 199, 693–731 (2023). https://doi.org/10.1007/s10957-023-02296-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02296-z

Keywords

Mathematics Subject Classification

Navigation