Skip to main content
Log in

Two Optimal Value Functions in Parametric Conic Linear Programming

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider the conic linear program given by a closed convex cone in an Euclidean space and a matrix, where vector on the right-hand side of the inequality constraint and the vector defining the objective function are subject to change. Using the strict feasibility condition, we prove the locally Lipschitz continuity and obtain some differentiability properties of the optimal value function of the problem under right-hand-side perturbations. For the optimal value function under linear perturbations of the objective function, similar differentiability properties are obtained under the assumption saying that both primal problem and dual problem are strictly feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, I., Monteiro, R.D.C.: A geometric view of parametric linear programming. Algorithmica 8, 161–176 (1992)

    Article  MathSciNet  Google Scholar 

  2. An, D.T.V.: Subdifferentials of Optimal Value Functions in Parametric Convex Optimization Problems. Ph.D. Dissertation, Institute of Mathematics, Vietnam Academy of Science and Technology, Hanoi (2018)

  3. An, D.T.V., Yen, N.D.: Differential stability of convex optimization problems under inclusion constraints. Appl. Anal. 94, 108–128 (2015)

    Article  MathSciNet  Google Scholar 

  4. Auslender, A.: Differential stability in nonconvex and nondifferentiable programming. Math. Program. Study 10, 29–41 (1979)

    Article  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  6. Berkelaar, A.B., Roos, K., Terlaky, T.: The optimal set and optimal partition approach. In: Gal, T., Greenberg, H.J. (eds.) Advances in Sensitivity Analysis and Parametric Programming, pp. 6.1-6.45. Kluwer Academic, Dordrecht (1997)

  7. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  Google Scholar 

  8. Cheung, Y.-L.: Preprocessing and Reduction for Semidefinite Programming via Facial Reduction: Theory and Practice. Ph.D. Dissertation, Department of Combinatorics & Optimization, University of Waterloo (2013)

  9. Cheung, Y.-L., Wolkowicz, H.: Sensitivity analysis of semidefinite programs without strong duality, tech. rep., (2014). (http://www.optimization-online.org/DB_FILE/2014/06/4416.pdf)

  10. Chuong, T.D., Jeyakumar, V.: Convergent conic linear programming relaxations for cone-convex polynomial programs. Oper. Res. Lett. 45, 220–226 (2017)

    Article  MathSciNet  Google Scholar 

  11. Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Academic Press, New York (1983)

    MATH  Google Scholar 

  12. Gauvin, J.: Formulae for the sensitivity analysis of linear programming problems. In: Approximation. Optimization and Mathematical Economics, pp. 117–120. Physica, Heidelberg (2001)

  13. Gauvin, J., Dubeau, F.: Differential properties of the marginal function in mathematical programming. Math. Program. Study 19, 101–119 (1982)

    Article  MathSciNet  Google Scholar 

  14. Gauvin, J., Dubeau, F.: Some examples and counterexamples for the stability analysis of nonlinear programming problems. Math. Program. Study 21, 69–78 (1984)

    Article  MathSciNet  Google Scholar 

  15. Gauvin, J., Tolle, J.W.: Differential stability in nonlinear programming. SIAM J. Control Optim. 15, 294–311 (1977)

    Article  MathSciNet  Google Scholar 

  16. Goldfarb, D., Scheinberg, K.: On parametric semidefinite programming. Appl. Numer. Math. 29, 361–377 (1999)

    Article  MathSciNet  Google Scholar 

  17. Gollan, B.: On the marginal function in nonlinear programming. Math. Oper. Res. 9, 208–221 (1984)

    Article  MathSciNet  Google Scholar 

  18. Hauenstein, J.D., Mohammad-Nezhad, A., Tang, T., Terlaky, T.: On computing the nonlinearity interval in parametric semidefinite optimization, (2019). arXiv:1908.10499

  19. Hoheisel, T., Kanzow, C.: On the Abadie and Guignard constraint qualifications for mathematical programmes with vanishing constraints. Optimization 58, 431–448 (2009)

    Article  MathSciNet  Google Scholar 

  20. Jansen, B., Roos, C., Terlaky, T.: An interior point approach to postoptimal and parametric analysis in linear programming. Report No. 92–21. Faculty of Technical Mathematics and Information/Computer science, Delft University of Technology (1992)

  21. Lee, G.M., Tam, N.N., Yen, N.D.: Stability of a class of quadratic programs with a conic constraint. Taiwanese. J. Math. 13, 1823–1836 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Li, W.: Abadie’s constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7, 966–978 (1997)

  23. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming. Internat. Ser. Oper. Res. Management Sci. 228, 4th ed., Springer, Cham (2016)

  24. Mohammad-Nezhad, A., Terlaky, T.: Parametric analysis of semidefinite optimization. Optimization 69, 187–216 (2020)

    Article  MathSciNet  Google Scholar 

  25. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Springer, Berlin (2006)

    Book  Google Scholar 

  26. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, II: Applications. Springer, Berlin (2006)

    Book  Google Scholar 

  27. Mordukhovich, B.S., Nam, N.M., Yen, N.D.: Subgradients of marginal functions in parametric mathematical programming. Math. Program. Ser. B 116, 369–396 (2009)

    Article  MathSciNet  Google Scholar 

  28. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  29. Rockafellar, R.T.: Conjugate Duality and Optimization. Regional Conference Series in Applied Mathematics, vol. 16. SIAM, Philadelphia (1974)

    Book  Google Scholar 

  30. Rockafellar, R.T.: Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming. Math. Program. Study 17, 28–66 (1982)

    Article  MathSciNet  Google Scholar 

  31. Ruszczynski, A.: Nonlinear Optimization. Princeton University Press, New Jersey (2006)

    Book  Google Scholar 

  32. Sekiguchi, Y., Waki, H.: Perturbation analysis of singular semidefinite programs and its applications to control problems. J. Optim. Theory Appl. 188, 52–72 (2021)

    Article  MathSciNet  Google Scholar 

  33. Shapiro, A.: First and second order analysis of nonlinear semidefinite programs. Math. Program. Ser. B 77, 301–320 (1997)

    MathSciNet  MATH  Google Scholar 

  34. Shapiro, A.: On duality theory of conic linear problems. In: Goberna, M.A., López, M.A. (eds.) Semi-Infinite Programming: Recent Advances, pp. 135–165, Springer (2001)

  35. Sturm, J.F., Zhang, S.: On sensitivity of central solutions in semidefinite programming. Math. Program. 90, 205–227 (2001)

    Article  MathSciNet  Google Scholar 

  36. Thibault, L.: On subdifferentials of optimal value functions. SIAM J. Control Optim. 29, 1019–1036 (1991)

    Article  MathSciNet  Google Scholar 

  37. Thieu, N.N.: Some differential estimates in linear programming. Acta Math. Vietnam. 41, 243–249 (2016)

    Article  MathSciNet  Google Scholar 

  38. Todd, M.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)

    Article  MathSciNet  Google Scholar 

  39. Yen, N.D.: Stability of the solution set of perturbed nonsmooth inequality systems and application. J. Optim. Theory Appl. 93, 199–225 (1997)

    Article  MathSciNet  Google Scholar 

  40. Yildirim, E.A.: Unifying optimal partition approach to sensitivity analysis in conic optimization. J. Optim. Theory Appl. 122, 405–423 (2004)

    Article  MathSciNet  Google Scholar 

  41. Yildirim, E.A., Todd, M.: Sensitivity analysis in linear programming and semidefinite programming using interior-point methods. Math. Program. 90, 229–261 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Foundation for Science & Technology Development (Vietnam), Pukyong National University (Busan, Korea), and Vietnam Institute for Advanced Study in Mathematics (VIASM). The first author was partially supported by the Hanoi National University of Education under Grant Number SPHN20-07: “Differential Stability in Conic Linear Programming”. The second author was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2019R1A2C1008672). The authors are grateful to the handling Associate Editor and the two anonymous referees for their careful readings, many insightful comments, and detailed suggestions which have helped to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Dong Yen.

Additional information

Communicated by Boris S. Mordukhovich.

Dedicated to Professor Franco Giannessi on the occasion of his 85th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, N.N., Kim, D.S. & Yen, N.D. Two Optimal Value Functions in Parametric Conic Linear Programming. J Optim Theory Appl 193, 574–597 (2022). https://doi.org/10.1007/s10957-021-01959-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01959-z

Keywords

Mathematics Subject Classification

Navigation