Skip to main content
Log in

A Full-Newton Step Infeasible Interior-Point Method for the Special Weighted Linear Complementarity Problem

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

As an extension of the complementarity problem (CP), the weighted complementarity problem (wCP) is a large class of equilibrium problems with wide applications in science, economics, and engineering. If the weight vector is zero, the wCP reduces to a CP. In this paper, we present a full-Newton step infeasible interior-point method (IIPM) for the special weighted linear complementarity problem over the nonnegative orthant. One iteration of the algorithm consists of one feasibility step followed by a few centering steps. All of them are full-Newton steps, and hence, no calculation of the step size is necessary. The iteration bound of the algorithm is as good as the best-known polynomial complexity of IIPMs for linear optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Amundson, N.R., Caboussat, A., He, J.W., Seinfeld, J.H.: Primal-dual interior-point method for an optimization problem related to the modeling of atmospheric organic aerosols. J. Optim. Theory Appl. 130, 375–407 (2006)

    Article  MathSciNet  Google Scholar 

  2. Anstreicher, K.M.: Interior-point algorithms for a generalization of linear programming and weighted centring. Optim. Methods Softw. 27, 605–612 (2012)

    Article  MathSciNet  Google Scholar 

  3. Asadi, A., Darvay, Z., Lesaja, G., Mahdavi-Amiri, N., Potra, F.: A full-Newton step interior-point method for monotone weighted linear complementarity problems. J. Optim. Theory Appl. 186, 864–878 (2020)

    Article  MathSciNet  Google Scholar 

  4. Asadi, A., Mansouri, H., Darvay, Z.: An infeasible full-NT step IPM for \(P_*(\kappa )\) horizontal linear complementarity problem over Cartesian product of symmetric cones. Optimization 66, 225–250 (2017)

    Article  MathSciNet  Google Scholar 

  5. Asadi, S., Gu, G., Roos, C.: Convergence of the homotopy path for a full-Newton step infeasible interior-point method. Oper. Res. Lett. 38, 147–151 (2010)

    Article  MathSciNet  Google Scholar 

  6. Caboussat, A., Leonard, A.: Numerical method for a dynamic optimization problem arising in the modeling of a population of aerosol particles. C. R. Math. Acad. Sci. Paris 346(11–12), 677–680 (2008)

    Article  MathSciNet  Google Scholar 

  7. Chi, X., Gowda, M.S., Tao, J.: The weighted horizontal linear complementarity problem on a Euclidean Jordan algebra. J. Glob. Optim. 73, 153–169 (2019)

    Article  MathSciNet  Google Scholar 

  8. Darvay, Z.: New interior point algorithms in linear programming. Adv. Model. Optim. 5, 51–92 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Darvay, Z., Papp, I.-M., Takács, P.-R.: An infeasible full-Newton step algorithm for linear optimization with one centering step in major iteration. Studia Univ. Babeş-Bolyai, Ser. Informatica 59, 28–45 (2014)

    Google Scholar 

  10. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23, 165–190 (2010)

    Article  MathSciNet  Google Scholar 

  11. Gu, G., Mansouri, H., Zangiabadi, M., Bai, Y.Q., Roos, C.: Improved full-Newton step \(O(nL)\) infeasible interior-point method for linear optimization. J. Optim Theory Appl. 145, 271–288 (2010)

    Article  MathSciNet  Google Scholar 

  12. Gu, G., Zangiabadi, M., Roos, C.: Full Nesterov-Todd step infeasible interior-point method for symmetric optimization. Eur. J. Oper. Res. 214, 473–484 (2011)

    Article  MathSciNet  Google Scholar 

  13. Karmarkar, N.: New polynomial-time algorithm for linear programming. Combinatorica 4, 373–395 (1984)

    Article  MathSciNet  Google Scholar 

  14. Kheirfam, B.: Simplified infeasible interior-point algorithm for SDO using full Nesterov-Todd step. Numer. Algorithms 59, 589–606 (2012)

    Article  MathSciNet  Google Scholar 

  15. Kheirfam, B.: A new complexity analysis for full-Newton step infeasible interior-pint algorithm for horizontal linear complementarity problems. J. Optim. Theory Appl. 161, 853–869 (2014)

    Article  MathSciNet  Google Scholar 

  16. Landry, C., Caboussat, A., Hairer, E.: Solving optimization-constrained differential equations with discontinuity points, with application to atmospheric chemistry. SIAM J. Sci. Comput. 31, 3806–3826 (2009)

    Article  MathSciNet  Google Scholar 

  17. Lesaja, G., Potra, F.A.: Adaptive full Newton-step infeasible interior-point method for sufficient horizontal LCP. Optim. Methods Softw. 34, 1014–1034 (2018)

    Article  MathSciNet  Google Scholar 

  18. Lustig, I.J.: Feasible issues in a primal-dual interior-point method. Math. Program. 67, 145–162 (1990)

    Article  Google Scholar 

  19. Mansouri, H., Roos, C.: A new full Newton-step \(O(n)\) infeasible interior-point algorithm for semidefinite optimization. Numer. Algorithms 52, 225–255 (2009)

    Article  MathSciNet  Google Scholar 

  20. Mansouri, H., Zangiabadi, M., Pirhaji, M.: A full-Newton step \(O(n)\) infeasible interior-point algorithm for linear complementarity problems. Nonlinear Anal. Real World Appl. 12, 545–561 (2011)

    Article  MathSciNet  Google Scholar 

  21. Pfeiffer, F., Foerg, M., Ulbrich, H.: Numerical aspects of non-smooth multibody dynamics. Comput. Methods Appl. Mech. Engrg. 195, 6891–6908 (2006)

    Article  MathSciNet  Google Scholar 

  22. Potra, F.A.: Weighted complementarity problems-a new paradigm for computing equilibria. SIAM J. Optim. 22, 1634–1654 (2012)

    Article  MathSciNet  Google Scholar 

  23. Potra, F.A.: Sufficient weighted complementarity problems. Comput. Optim. Appl. 64, 467–488 (2016)

    Article  MathSciNet  Google Scholar 

  24. Roos, C.: A full-Newton step \(O(n)\) infeasible interior-point algorithm for linear optimization. SIAM J. Optim. 16, 1110–1136 (2006)

    Article  MathSciNet  Google Scholar 

  25. Roos, C.: An improved and simplified full-Newton step \(O(n)\) infeasible interior-point method for linear optimization. SIAM J. Optim. 25, 102–114 (2015)

    Article  MathSciNet  Google Scholar 

  26. Roos, C., Terlaky, T., Vial, J.-Ph.: Theory and Algorithms for Linear Optimization. An Interior-Point Approach. John Wiley & Sons, Chichester, UK (1997). Revised edition: Interior-Point Methods for Linear Optimization. Springer, New York (2005)

  27. Tanabe, K.: Centered Newton method for linear programming: Interior and “exterior point method, in New Methods for Linear Programming, K. Tone, ed., The Institute of Statistical Mathematics, Tokyo, Japan, pp. 98-100 (in Japanese) (1990)

  28. Tang, J.: A variant nonmonotone smoothing algorithm with improved numerical results for large-scale LWCPs. Comput. Appl. Math. 37, 3927–3936 (2018)

    Article  MathSciNet  Google Scholar 

  29. Tasora, A., Anitescu, M.: A fast NCP solver for large rigid-body problems with contacts, friction, and joints. In: Multibody Dynamics, vol. 12 of Computer Methods Applied Science, pp. 45-55. Springer, Berlin, (2009)

  30. Ye, Y.: Interior Point Algorithms. Theory and analysis, John Wiley and Sons, Chichester, UK (1997)

    Book  Google Scholar 

  31. Zhang, J.: A smoothing Newton algorithm for weighted linear complementarity problem. Optim. Lett. 10, 499–509 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous referees for their valuable suggestions and comments which have greatly improved the presentation of this paper. This research is supported by the National Natural Science Foundation of China (Nos. 11861026, 11971302) and Guangxi Natural Science Foundation (No. 2016GXNSFBA380102), China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Wang.

Additional information

Communicated by Florian Potra.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of Lemma 4.3

Proof of Lemma 4.3

By (15), (19) and (20), we have

$$\begin{aligned} (v^{f})^{2}=\frac{w(t)(e+d_{x}d_{s})}{w(t_{+})}=\frac{w(t)(e+d_{x}d_{s})}{(1-\theta )w(t)+\theta w}. \end{aligned}$$

Since \(\omega (v)<\dfrac{1}{\sqrt{2}},\) we obtain from (18) that \(\Vert d_{x}d_{s}\Vert _{\infty }\le 2\omega (v)^{2}<1,\) and hence \(e+d_{x}d_{s}>0.\) By letting \(u:=\sqrt{e+d_{x}d_{s}},\) we have \(v^{f}=\sqrt{\dfrac{w(t)}{(1-\theta )w(t)+\theta w}}u.\) Then, from (20),

$$\begin{aligned} 4\delta (v^{f})^{2}= & {} \left\| \sqrt{\dfrac{w(t)}{(1-\theta )w(t)+\theta w}}u-\sqrt{\dfrac{(1-\theta )w(t)+\theta w}{w(t)}}u^{-1}\right\| ^{2}\\= & {} \left\| \dfrac{\theta (w(t)-w)}{\sqrt{w(t)[(1-\theta )w(t)+\theta w]}}u+\sqrt{\dfrac{(1-\theta )w(t)+\theta w}{w(t)}}(u-u^{-1})\right\| ^{2}\\= & {} \theta ^{2}e^{T}\left[ \dfrac{(w(t)-w)^{2}}{w(t)((1-\theta )w(t)+\theta w)}u^{2}\right] +e^{T}\left[ \dfrac{((1-\theta )w(t)+\theta w)}{w(t)}(u-u^{-1})^{2}\right] \\&+2\theta e^{T}\left[ \dfrac{(w(t)-w)}{w(t)}u(u-u^{-1})\right] . \end{aligned}$$

Taking into account the fact that \(u^{2}=e+d_{x}d_{s},\) the three terms in the last relation can be written, respectively, as follows:

$$\begin{aligned}&\theta ^{2}e^{T}\left[ \dfrac{(w(t)-w)^{2}}{w(t)((1-\theta )w(t)+\theta w)}u^{2}\right] =\theta ^{2}e^{T}\left[ \dfrac{(w(t)-w)^{2}}{w(t)((1-\theta )w(t)+\theta w)}(e+d_{x}d_{s})\right] \\&\quad =\theta ^{2}e^{T}\left[ \dfrac{(w(t)-w)^{2}}{w(t)((1-\theta )w(t)+\theta w)}\right] +\theta ^{2}e^{T}\left[ \dfrac{(w(t)-w)^{2}}{w(t)((1-\theta )w(t)+\theta w)}d_{x}d_{s}\right] ,\\&e^{T}\left[ \dfrac{((1-\theta )w(t)+\theta w)}{w(t)}(u-u^{-1})^{2}\right] \\&\quad =e^{T}\left[ \dfrac{((1-\theta )w(t)+\theta w)}{w(t)}(u^{2}+u^{-2}-2e)\right] \\&\quad =e^{T}\left[ \dfrac{((1-\theta )w(t)+\theta w)}{w(t)}(d_{x}d_{s}+\dfrac{e}{e+d_{x}d_{s}}-e)\right] \\&\quad =e^{T}\left[ \dfrac{((1-\theta )w(t)+\theta w)}{w(t)}d_{x}d_{s}\right] +e^{T}\left[ \dfrac{((1-\theta )w(t)+\theta w)}{w(t)}\cdot \dfrac{e}{e+d_{x}d_{s}}\right] \\&\qquad -e^{T}\left[ \dfrac{(1-\theta )w(t)+\theta w}{w(t)}\right] , \end{aligned}$$

and

$$\begin{aligned}&2\theta e^{T}\left[ \dfrac{(w(t)-w)}{w(t)}u(u-u^{-1})\right] \\&\quad =2\theta e^{T}\left[ \dfrac{(w(t)-w)}{w(t)}u^{2}\right] -2\theta e^{T}\left[ \dfrac{w(t)-w}{w(t)}\right] \\&\quad =2\theta e^{T}(eu^{2})-2\theta e^{T}\left[ \dfrac{w}{w(t)}u^{2}\right] -2\theta e^{T}e+2\theta e^{T}\left[ \dfrac{w}{w(t)}\right] \\&\quad =2\theta e^{T}(e+d_{x}d_{s})-2\theta e^{T}\left[ \dfrac{w}{w(t)}(e+d_{x}d_{s})\right] -2\theta n+2\theta e^{T}\left[ \dfrac{w}{w(t)}\right] \\&\quad =2\theta n+2\theta d_{x}^{T}d_{s}-2\theta e^{T}\left[ \dfrac{w}{w(t)}\right] -2\theta e^{T}\left[ \dfrac{w}{w(t)}d_{x}d_{s}\right] -2\theta n+2\theta e^{T}\left[ \dfrac{w}{w(t)}\right] \\&\quad =2\theta e^{T}\left[ \dfrac{(w(t)-w)}{w(t)}d_{x}d_{s}\right] . \end{aligned}$$

Substitution yields

$$\begin{aligned} 4\delta (v^{f})^{2}= & {} \theta ^{2}e^{T}\left[ \dfrac{(w(t)-w)^{2}}{w(t)((1-\theta )w(t)+\theta w)}\right] +\theta ^{2}e^{T}\left[ \dfrac{(w(t)-w)^{2}}{w(t)((1-\theta )w(t)+\theta w)}d_{x}d_{s}\right] \\&+e^{T}\left[ \dfrac{((1-\theta )w(t)+\theta w)}{w(t)}d_{x}d_{s}\right] +e^{T}\left[ \dfrac{((1-\theta )w(t)+\theta w)}{w(t)}\cdot \dfrac{e}{e+d_{x}d_{s}}\right] \\&-e^{T}\left[ \dfrac{((1-\theta )w(t)+\theta w)}{w(t)}\right] +2\theta e^{T}\left[ \dfrac{(w(t)-w)}{w(t)}d_{x}d_{s}\right] \\= & {} e^{T}\left\{ \left[ \dfrac{\theta ^{2}(w(t)-w)^{2}}{w(t)((1-\theta )w(t)+\theta w)} +\dfrac{(1+\theta )w(t)-\theta w}{w(t)}\right] d_{x}d_{s}\right\} \\&+e^{T}\left[ \dfrac{\theta ^{2}(w(t)-w)^{2}}{w(t)((1-\theta )w(t)+\theta w)} -\dfrac{(1-\theta )w(t)+\theta w}{w(t)}\right] \\&+e^{T}\left\{ \left[ (1-\theta )e+\theta \dfrac{w}{w(t)}\right] \dfrac{e}{e+d_{x}d_{s}}\right\} . \end{aligned}$$

Since

$$\begin{aligned}&\dfrac{\theta ^{2}(w(t)-w)^{2}}{w(t)((1-\theta )w(t)+\theta w)} +\dfrac{(1+\theta )w(t)-\theta w}{w(t)}\\&\quad =\dfrac{\theta ^{2}(w(t)^{2}+w^{2}-2w(t)w)+((1+\theta )w(t)-\theta w)((1-\theta )w(t)+\theta w)}{w(t)((1-\theta )w(t)+\theta w)}\\&\quad =\dfrac{\theta ^{2}w(t)^{2}+\theta ^{2}w^{2}-2\theta ^{2}w(t)w+(1-\theta ^{2})w(t)^{2}-\theta ^{2}w^{2}+2\theta ^{2}w(t)w}{w(t)((1-\theta )w(t)+\theta w)}\\&\quad =\dfrac{w(t)}{(1-\theta )w(t)+\theta w} \end{aligned}$$

and

$$\begin{aligned}&\dfrac{\theta ^{2}(w(t)-w)^{2}}{w(t)((1-\theta )w(t)+\theta w)} -\dfrac{(1-\theta )w(t)+\theta w}{w(t)}\\&\quad =\dfrac{\theta ^{2}(w(t)-w)^{2}-((1-\theta )w(t)+\theta w)^{2}}{w(t)((1-\theta )w(t)+\theta w)}\\&\quad =\dfrac{[\theta (w(t)-w)+(1-\theta )w(t)+\theta w][\theta (w(t)-w)-(1-\theta )w(t)-\theta w]}{w(t)((1-\theta )w(t)+\theta w)}\\&\quad =\dfrac{\theta (w(t)-w)-(1-\theta )w(t)-\theta w}{(1-\theta )w(t)+\theta w}\\&\quad =\dfrac{\theta (w(t)-w)}{(1-\theta )w(t)+\theta w}-e, \end{aligned}$$

we have

$$\begin{aligned} 4\delta (v^{f})^{2}= & {} e^{T}\left[ \dfrac{w(t)}{(1-\theta )w(t)+\theta w}d_{x}d_{s}\right] +e^{T}\left[ \dfrac{\theta (w(t)-w)}{(1-\theta )w(t)+\theta w}-e\right] \\&+e^{T}\left\{ \left[ (1-\theta )e+\theta \dfrac{ w}{w(t)}\right] \dfrac{e}{e+d_{x}d_{s}}\right\} \\= & {} e^{T}\left[ \dfrac{w(t)}{(1-\theta )w(t)+\theta w}d_{x}d_{s}\right] +e^{T}\left[ \dfrac{\theta (w(t)-w)}{(1-\theta )w(t)+\theta w}-e\right] \\&-e^{T}\left\{ \left[ (1-\theta )e+\theta \dfrac{ w}{w(t)}\right] \dfrac{d_{x}d_{s}}{e+d_{x}d_{s}}\right\} +e^{T}\left[ (1-\theta )e+\theta \dfrac{ w}{w(t)}\right] \\= & {} e^{T}\left[ \dfrac{w(t)}{(1-\theta )w(t)+\theta w}d_{x}d_{s}\right] +e^{T}\left[ \frac{\theta (w(t)-w)}{(1-\theta )w(t)+\theta w}+\theta \frac{w}{w(t)}-\theta e\right] \\&-(1-\theta )e^{T}\left( \dfrac{d_{x}d_{s}}{e+d_{x}d_{s}}\right) -\theta e^{T}\left[ \dfrac{w}{w(t)}\cdot \dfrac{d_{x}d_{s}}{e+d_{x}d_{s}}\right] \\= & {} e^{T}\left[ \dfrac{w(t)}{(1-\theta )w(t)+\theta w}d_{x}d_{s}\right] +\theta ^{2} e^{T}\left[ \dfrac{(w(t)-w)^{2}}{w(t)((1-\theta )w(t)+\theta w)}\right] \\&-(1-\theta )e^{T}\left( \dfrac{d_{x}d_{s}}{e+d_{x}d_{s}}\right) -\theta e^{T}\left[ \dfrac{w}{w(t)}\cdot \dfrac{d_{x}d_{s}}{e+d_{x}d_{s}}\right] . \end{aligned}$$

Hence, it follows from (4), (17) and (18) that

$$\begin{aligned} 4\delta (v^{f})^{2}\le & {} \dfrac{1}{1-\theta }\sum \limits _{i=1}^{n}|d_{x_{i}}d_{s_{i}}|+(1-\theta )\dfrac{\sum \limits _{i=1}^{n}|d_{x_{i}}d_{s_{i}}|}{1-2\omega (v)^{2}} +\theta \sum \limits _{i=1}^{n}\dfrac{w_{i}}{w_{i}(t)}\cdot \dfrac{|d_{x_{i}}d_{s_{i}}|}{1-2\omega (v)^{2}}\\&+\theta ^{2}\sum \limits _{i=1}^{n}\left( \dfrac{t}{t_{0}}\right) ^{2}\cdot \dfrac{(w^{0}_{i}-w_{i})^{2}}{w_{i}(t)((1-\theta )w_{i}(t)+\theta w_{i})}\\\le & {} \dfrac{2\omega (v)^{2}}{1-\theta }+(1-\theta )\dfrac{2\omega (v)^{2}}{1-2\omega (v)^{2}} +\theta \max \limits _{1\le i\le n}\left\{ 1,\dfrac{w_{i}}{w^{0}_{i}}\right\} \dfrac{2\omega (v)^{2}}{1-2\omega (v)^{2}}\\&+\theta ^{2}n\max \limits _{1\le i\le n}\left\{ \left( \dfrac{w^{0}_{i}}{w_{i}}-1\right) ^{2},\left( 1-\dfrac{w_{i}}{w^{0}_{i}}\right) ^{2},\dfrac{1}{1-\theta }\right\} . \end{aligned}$$

Moreover, in the case of \(w_{i}=0\) for some i,  we have

$$\begin{aligned} \left( \dfrac{t}{t_{0}}\right) ^{2}\cdot \dfrac{(w^{0}_{i}-w_{i})^{2}}{w_{i}(t)((1-\theta )w_{i}(t)+\theta w_{i})} =\left( \dfrac{t}{t_{0}}\right) ^{2}\cdot \dfrac{(w^{0}_{i})^{2}}{(1-\theta )\cdot \left( \dfrac{t}{t_{0}}w^{0}_{i}\right) ^{2}}=\dfrac{1}{1-\theta }, \end{aligned}$$

which implies that relation (21) holds for \(w\ge 0.\) \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, X., Wang, G. A Full-Newton Step Infeasible Interior-Point Method for the Special Weighted Linear Complementarity Problem. J Optim Theory Appl 190, 108–129 (2021). https://doi.org/10.1007/s10957-021-01873-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01873-4

Keywords

Mathematics Subject Classification

Navigation