Skip to main content
Log in

A Study of Piecewise Linear-Quadratic Programs

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Motivated by a growing list of nontraditional statistical estimation problems of the piecewise kind, this paper provides a survey of known results supplemented with new results for the class of piecewise linear-quadratic programs. These are linearly constrained optimization problems with piecewise linear-quadratic objective functions. We first summarize some local properties of a piecewise linear-quadratic function in terms of their first- and second-order directional derivatives. We next extend some well-known necessary and sufficient second-order conditions for local optimality of a quadratic program to a piecewise linear-quadratic program and provide a dozen such equivalent conditions for strong, strict, and isolated local optimality, showing in particular that a piecewise linear-quadratic program has the same characterizations for local minimality as a standard quadratic program. As a consequence of one such condition, we show that the number of strong, strict, or isolated local minima of a piecewise linear-quadratic program is finite; this result supplements a recent result about the finite number of directional stationary objective values. We also consider a special class of unconstrained composite programs involving a non-differentiable norm function, for which we show that the task of verifying the second-order stationary condition can be converted to the problem of checking the copositivity of certain Schur complement on the nonnegative orthant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, G.M., Tam, N.N., Yen, N.D.: Quadratic Programming and Affine Variational Inequalities A Qualitative Study. Springer, New York (2005)

    MATH  Google Scholar 

  2. Sun, J.: On monotropic piecewise quadratic programming. Ph.D. dissertation, Department of Applied Mathematics, University of Washington, Seattle (1986)

  3. Sun, J.: On the structure of convex piecewise quadratic functions. J. Optim. Theory Appl. 72, 499–510 (1992)

    Article  MathSciNet  Google Scholar 

  4. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis: Grundlehren der mathematischen Wissenschaften, vol. 317. Springer, Berlin (2009). Third printing

    Google Scholar 

  5. Burke, J.V., Engle, A.: Strong metric (sub)regularity of KKT mappings for piecewise linear-quadratic convex-composite optimization (2018). arXiv:1805.01073

  6. Cui, Y., Pang, J.S.: On the finite number of directional stationary values of piecewise programs (2018). arXiv:1803.00190

  7. Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. SIAM Classics in Applied Mathematics 4 (Philadelphia 1990). [Originally published by Wiley (1968)]

  8. Ben-Tal, A., Zowe, J.: Directional derivatives in nonsmooth optimization. J. Optim. Theory Appl. 47, 483–490 (1985)

    Article  MathSciNet  Google Scholar 

  9. Ben-Tal, A., Zowe, J.: Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems. Math. Program. 24, 70–91 (1982)

    Article  MathSciNet  Google Scholar 

  10. Ben-Tal, A., Zowe, J.: A unified theory of first and second order conditions for extremum problems in topological vector spaces. Math. Program. Study 19, 39–76 (1982)

    Article  MathSciNet  Google Scholar 

  11. Chaney, R.W.: Second-order directional derivatives for nonsmooth functions. J. Math. Anal. Appl. 128, 495–511 (1987)

    Article  MathSciNet  Google Scholar 

  12. Mordukhovich, B.: Variational Analysis and Generalized Differentiation I: Basic Theory. Grundlehren der mathematischen Wissenschaften, vol. 330. Spriner, Berlin (2006)

  13. Contesse, L.B.: Une caractérisation complète des minima locaux en programmation quadratique. Numer. Math. 34, 315–332 (1980)

    Article  MathSciNet  Google Scholar 

  14. Majthay, A.: Optimality conditions for quadratic programming. Math. Program. 1, 359–365 (1971)

    Article  MathSciNet  Google Scholar 

  15. Borwein, J.M.: Necessary and sufficient conditions for quadratic minimality. Numer. Funct. Anal. Optim. 5, 127–140 (1982)

    Article  MathSciNet  Google Scholar 

  16. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)

    MATH  Google Scholar 

  17. Robinson, S.M.: Generalized equations and their solutions, part II: applications to nonlinear programming. Math. Program. Study 19, 200–221 (1982)

    Article  Google Scholar 

  18. Bolte, J., Daniilidis, A., Lewis, A.: A nonsmooth Morse–Sard theorem for subanalytic functions. J. Math. Anal. Appl. 321, 729–740 (2006)

    Article  MathSciNet  Google Scholar 

  19. Shapiro, A.: On concepts of directional differentiability. J. Optim. Theory Appl. 66, 477–487 (1990)

    Article  MathSciNet  Google Scholar 

  20. Bartels, S.G., Kuntz, L., Scholtes, S.: Continuous selections of linear functions and nonsmooth critical point theory. Nonlinear Anal. Theory Methods Appl. 24, 385–407 (1994)

    Article  MathSciNet  Google Scholar 

  21. Scholtes, S.: Introduction to Piecewise Differentiable Equations. Springer, Berlin (2002)

    MATH  Google Scholar 

  22. Nouiehed, M., Pang, J.S., Razaviyayn, M.: On the pervasiveness of difference-convexity in optimization and statistics. Math. Program. 17, 195–222 (2019)

    Article  MathSciNet  Google Scholar 

  23. Cui, Y., Pang, J.S., Sen, B.: Composite difference-max programs for some modern statistical estimation problems. SIAM J. Optim. 28, 3344–3374 (2018)

    Article  MathSciNet  Google Scholar 

  24. Kummer, B.: Newton’s method for non-differentiable functions. In: Guddat, J., Bank, B., Hollatz, H., Kall, P., Klatte, D., Kummer, B., Lommatzsch, K., Tammer, K., Vlach, M., Zimmermann, K. (eds.) Advances in Mathematical Optimization, pp. 114–125. Akademie, Berlin (1988)

    Google Scholar 

  25. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 957–972 (1977)

    Article  MathSciNet  Google Scholar 

  26. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–368 (1993)

    Article  MathSciNet  Google Scholar 

  27. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  28. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  Google Scholar 

  29. Rockafellar, R.T.: Some properties of piecewise smooth functions. Comput. Optim. Appl. 2, 247–250 (2003)

    Article  Google Scholar 

  30. Fischer, A., Marshall, M.: Extending piecewise polynomial functions in two variables. Annales de la Facult’e des Sciences de Toulouse XXII 252–268, (2013)

  31. Sahni, S.: Computationally related problems. SIAM J. Comput. 3, 262–279 (1974)

    Article  MathSciNet  Google Scholar 

  32. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the Theory of NP-Completeness. W.H Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  33. Vavasis, S.A.: Quadratic programming is in NP. Inf. Process. Lett. 36, 73–77 (1990)

    Article  MathSciNet  Google Scholar 

  34. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-hard. J. Glob. Optim. 1, 15–22 (1991)

    Article  MathSciNet  Google Scholar 

  35. Crouzeix, J.P.: First and second order characterization of generalized convexity. First Summer School on Generalized Convexity, Karlovassi-Samos (Greece), August 25–28 (1999)

  36. Jargalsaikhan, B.: Indefinite copositive matrices with exactly one positive eigenvalue or exactly one negative eigenvalue. Electron. J. Linear Algebra 26, 754–761 (2013)

    Article  MathSciNet  Google Scholar 

  37. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem: SIAM Classics in Applied Mathematics, vol. 60, Philadelphia (2009) [Originally published by Academic Press, Boston (1992)]

  38. Murty, K.G.: Computational complexity of parametric linear programming. Math. Program. 19, 213–219 (1980)

    Article  MathSciNet  Google Scholar 

  39. Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39, 117–129 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Chang was supported in part by the NSFC, China, under Grant 61731018, and by the Open Research Fund from Shenzhen Research Institute of Big Data, under Grant No. 2019ORF01002. The work of Hong was based on research partially supported by the U.S. National Science Foundation Grant CMMI-1727757 and Army Research Office (Grant W911NF-19-1-0247). The work of Pang was based on research partially supported by the U.S. National Science Foundation grant IIS-1632971 and the Air Force Office of Sponsored Research under Grant FA9550-18-1-0382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyi Hong.

Additional information

Communicated by Aris Daniilidis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Chang, TH., Hong, M. et al. A Study of Piecewise Linear-Quadratic Programs. J Optim Theory Appl 186, 523–553 (2020). https://doi.org/10.1007/s10957-020-01716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01716-8

Keywords

Mathematics Subject Classification

Navigation