Skip to main content
Log in

A Relaxation Result in the Vectorial Setting and Power Law Approximation for Supremal Functionals

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We provide relaxation for not lower semicontinuous supremal functionals defined on vectorial Lipschitz functions, where the Borel level convex density depends only on the gradient. The connection with indicator functionals is also enlightened, thus extending previous lower semicontinuity results in that framework. Finally, we discuss the power law approximation of supremal functionals, with nonnegative, coercive densities having explicit dependence also on the spatial variable, and satisfying minimal measurability assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdullayev, F., Bocea, M., Mihăilescu, M.: A variational characterization of the effective yield set for ionic polycrystals. Appl. Math. Optim. 69(3), 487–503 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Barron, E.N., Bocea, M., Ensen, R.R.: Viscosity solutions of stationary Hamilton–Jacobi equations and minimizers of \(L^\infty \) functionals. Proc. Am. Math. Soc. 145(12), 5257–5265 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Barron, E.N., Bocea, M., Jensen, R.R.: Duality for the \(L^\infty \) optimal transport problem. Trans. Am. Math. Soc. 369(5), 3289–3323 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Bocea, M., Mihăilescu, M.: Existence of nonnegative viscosity solutions for a class of problems involving the \(\infty \)-Laplacian. NoDEA Nonlinear Differ. Equ. Appl. 23(2), 11–21 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Briani, A., Garroni, A., Prinari, F.: Homogenization of \(L^\infty \) functionals. Math. Models Methods Appl. Sci. 14(12), 1761–1784 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Katzourakis, N.: Solutions of vectorial Hamilton–Jacobi equations are rank-one absolute minimisers in \(L^\infty \). Adv. Nonlinear Anal. 8(1), 508–516 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Katzourakis, N., Parini, E.: The eigenvalue problem for the \(\infty \)-bilaplacian. NoDEA Nonlinear Differ. Equ. Appl. 24(6), Art. 68, 25 (2017)

  8. Katzourakis, N., Pryer, T.: On the numerical approximation of \(p\)-biharmonic and \(\infty \)-biharmonic functions. Numer. Methods Partial Differ. Equ. 35(1), 155–180 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Katzourakis, N., Shaw, G.: Counterexamples in calculus of variations in \(L^\infty \) through the vectorial eikonal equation. C. R. Math. Acad. Sci. Paris 356(5), 498–502 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Barron, E.N., Jensen, R.: Relaxed minimax control. SIAM J. Control Optim. 33(4), 1028–1039 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Acerbi, E., Buttazzo, G., Prinari, F.: The class of functionals which can be represented by a supremum. J. Convex. Anal. 9(1), 225–236 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Barron, E.N., Jensen, R., Wang, C.Y.: Lower semicontinuity of \(L^\infty \) functionals. Ann. Inst. H. Poincare Anal. Non Lineaire 18, 495–517 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Prinari, F.: Semicontinuity and supremal representation in the calculus of variations. Appl. Math. Optim. 54, 111–145 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Prinari, F.: Semicontinuity and relaxation of \(L^\infty \)-functionals. Adv. Calc. Var. 2(1), 43–71 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Ansini, N., Prinari, F.: On the lower semicontinuity of supremal functional under differential constraints. ESAIM Control Optim. Calc. Var. 21(4), 1053–1075 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Champion, T., De Pascale, L., Prinari, F.: \(\Gamma \)-convergence and absolute minimizers for supremal functionals. ESAIM Control Optim. Calc. Var. 10(7), 14–27 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Garroni, A., Ponsiglione, M., Prinari, F.: From 1-homogeneous supremal functionals to difference quotients: relaxation and \(\Gamma \)-convergence. Calc. Var. Partial Differ. Equ. 27(4), 397–420 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Gelli, M.S., Prinari, F.: The role of intrinsic distances in the relaxation of \(L^\infty \)-functionals arXiv:1802.06687 (2018)

  19. Ansini, N., Prinari, F.: Power-law approximation of supremal functional under differential constraints. SIAM J. Math. Anal. 46(2), 1085–1115 (2015)

    MATH  Google Scholar 

  20. Ribeiro, A.M., Zappale, E.: Existence of minimizers for nonlevel convex supremal functionals. SIAM J. Control Optim. 5(5), 3341–3370 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Abbasi, B., Oberman, A.M.: Computing the level set convex hull. J. Sci. Comput. 75(1), 26–42 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Kreisbeck, C., Zappale, E.: Lower semicontinuity and relaxation of nonlocal \(L^\infty \)-functionals. Calc. Var. Partial Differ. Equ. (2020). arXiv:1905.08832. https://doi.org/10.1007/s00526-020-01782-w

  23. Anza Hafsa, O., Mandallena, J.-P.: Homogenization of unbounded singular integrals in \(W^{1,\infty }\). Ric. Mater. 61, 185–217 (2012)

    MATH  Google Scholar 

  24. Garroni, A, Nesi, V., Ponsiglione, M.: Dielectric breakdown: optimal bounds. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457(2014), 2317–2335 (2001)

  25. Kreisbeck, C., Zappale, E.: Loss of double-integral character during relaxation. Preprint, arXiv: 1907.13180 (2019)

  26. Carbone, L., De Arcangelis, R.: Unbounded Functionals in the Calculus of Variations. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Vol. 125, pp. xiv+394. Chapman & Hall/CRC, Boca Raton (2002)

  27. Wagner, M.: On the lower semicontinuous quasiconvex envelope for unbounded integrands I. ESAIM Control Optim. Calc. Var. 15(1), 68–101 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Wagner, M.: On the lower semicontinuous quasiconvex envelope for unbounded integrands II Representation by generalized controls. J. Convex. Anal. 16(2), 441–472 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Duerinckx, M., Gloria, A.: Stochastic homogenization of nonconvex unbounded integral functionals with convex growth. Arch. Ration. Mech. Anal. 221(3), 1511–1584 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Babadjian, J.-F., Prinari, F., Zappale, E.: Dimensional reduction for supremal functionals. Discrete Contin. Dyn. Syst. Ser. A 32(5), 1503–1535 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Zappale, E.: A remark on dimension reduction for supremal functionals: the case with convex domains. Differ. Integr. Equ. 26(9–10), 1077–1090 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Zappale, E.: A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains. Evol. Equ. Control Theory 6(2), 299–318 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Benešová, B., Kružík, M., Schlömerkemper, A.: A note on locking materials and gradient polyconvexity. Math. Models Methods Appl. Sci. 28(12), 2367–2401 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Prinari, F.: On the lower semicontinuity and approximation of \(L^\infty \)-functionals. NoDEA Nonlinear Differ. Equ. Appl. 22(6), 1591–1605 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Rockafellar, R.T.: Convex Analysis, Princeton Landmarks in Mathematics, Reprint of the 1970 original, Princeton Paperbacks, p. xviii+451. Princeton University Press, Princeton (1997)

  36. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Birkhauser, Boston (1993)

    MATH  Google Scholar 

  37. Barron, E.N., Liu, W.: Calculus of variation in \(L^\infty \). Appl. Math. Optim. 3(35), 237–263 (1997)

    MATH  Google Scholar 

  38. Volle, M.: Duality for level sum of quasiconvex function and application. ESAIM Control Optim. Calc. Var. 3, 329–343 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Martinez-Legaz, J.-E.: On Lower Subdifferentiable Functions. Trends in Mathematical Optimization, 4th French-German Conference, Irsee/FRG 1986. In: International Series of Numerical Mathematics, Vol. 84, pp. 197–232 (1988)

  40. Buttazzo, G.: Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Research Notes in Mathematics Series, Vol. 207, p. iv+222, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York (1989); ISBN 0-582-01859-5

  41. Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, 78, 2nd ed, p. xii+619. Springer, New York (2008)

  42. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variations and Free Discontinuity Problems, Oxford Mathematical Monographs, p. xviii+434. Clarendon Press, Oxford University Press, New York (2000)

  43. De Arcangelis, R.: On the relaxation of some classes of pointwise gradient constrained energies. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(1), 113–137 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

EZ is indebted with Dipartimento di Matematica of University of Ferrara for its kind support and hospitality. The authors thank the editors and the anonymous referee for their suggestions and comments. Both the authors are members of GNAMPA-INdAM, whose support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francesca Prinari or Elvira Zappale.

Additional information

Communicated by Giuseppe Buttazzo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prinari, F., Zappale, E. A Relaxation Result in the Vectorial Setting and Power Law Approximation for Supremal Functionals. J Optim Theory Appl 186, 412–452 (2020). https://doi.org/10.1007/s10957-020-01712-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01712-y

Keywords

Mathematics Subject Classification

Navigation