Skip to main content
Log in

Proper or Weak Efficiency via Saddle Point Conditions in Cone-Constrained Nonconvex Vector Optimization Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Motivated by many applications (for instance, some production models in finance require infinity-dimensional commodity spaces, and the preference is defined in terms of an ordering cone having possibly empty interior), this paper deals with a unified model, which involves preference relations that are not necessarily transitive or reflexive. Our study is carried out by means of saddle point conditions for the generalized Lagrangian associated with a cone-constrained nonconvex vector optimization problem. We establish a necessary and sufficient condition for the existence of a saddle point in case the multiplier vector related to the objective function belongs to the quasi-interior of the polar of the ordering set. Moreover, exploiting suitable Slater-type constraints qualifications involving the notion of quasi-relative interior, we obtain several results concerning the existence of a saddle point, which serve to get efficiency, weak efficiency and proper efficiency. Such results generalize, to the nonconvex vector case, existing conditions in the literature. As a by-product, we propose a notion of properly efficient solution for a vector optimization problem with explicit constraints. Applications to optimality conditions for vector optimization problems are provided with particular attention to bicriteria problems, where optimality conditions for efficiency, proper efficiency and weak efficiency are stated, both in a geometric form and by means of the level sets of the objective functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Flores-Bazán, F., Mastroeni, G.: Strong duality in cone constrained nonconvex optimization. SIAM J. Optim. 23, 153–169 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Flores-Bazán, F., Echegaray, W., Flores-Bazán, F., Ocaña, E.: Primal or dual strong duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap. J. Glob. Optim. 69, 823–845 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Giannessi, F.: Constrained Optimization and Image Space Analysis. Springer, New York (2005)

    MATH  Google Scholar 

  4. Giannessi, F.: Theorems of the alternative and optimality conditions. J. Optim. Theory Appl. 60, 331–365 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fullerton, R.E., Braunschweiger, C.C.: Quasi-interior points of cones. Technical Report No. 2, University of Delaware, Department of Mathematics (1963)

  6. Borwein, J.M., Lewis, A.S.: Partially finite convex programming, part I: quasi relative interiors and duality theory. Math. Program. Ser. A 57(1992), 15–48 (1992)

    Article  MATH  Google Scholar 

  7. Borwein, J.M., Goebel, R.: Notions of relative interior in Banach spaces. J. Math. Sci. 115, 2542–2553 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cammaroto, F., Di Bella, B.: Separation theorem based on the quasirelative interior in convex optimization. J. Optim. Theory Appl. 125, 223–229 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bot, R.I., Csetnek, E.R., Wanka, G.: Regularity conditions via quasi-relative interior in convex programming. SIAM J. Optim. 19, 217–233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Flores-Bazán, F., Flores-Bazán, F., Vera, C.: Gordan-type alternative theorems and vector optimization revisited. In: Ansari, Q.H., Yao, J.C. (eds.) Recent Developments in Vector Optimization, pp. 29–59. Springer, Berlin (2012)

    Chapter  Google Scholar 

  11. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co., Inc., River Edge (2002)

    Book  MATH  Google Scholar 

  12. Zǎlinescu, C.: On the use of quasi-relative interior in optimization. Optimization 64, 1795–1823 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhou, Z.A., Yang, X.M.: Optimality conditions of generalized subconvexlike set-valued optimization problems based on the quasi-relative interior. J. Optim. Theory Appl. 150, 327–340 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hernández-Jiménez, B., Osuna-Gomez, R., Rojas-Medar, M.A.: Characterization of weakly efficient solutions for nonlinear multiobjective programming problems. Duality. J. Convex Anal. 21, 1007–1022 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Daniele, P., Giuffrè, S.: General infinite dimensional duality and applications to evolutionary networks equilibrium problems. Optim. Lett. 1, 227–243 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bot, R.I., Grad, S.M., Wanka, G.: Duality in Vector Optimization. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  17. Bigi, G.: Saddlepoint optimality criteria in vector optimization. In: Guerraggio, A., et al. (eds.) Optimization in Economics, Finance and Industry (Verona), pp. 85–102. Datanova, Milan (2002)

    Google Scholar 

  18. Gutiérrez, C., Huerga, L., Novo, V.: Scalarization and saddle points of approximate proper solutions in nearly subconvexlike vector optimization problems. J. Math. Anal. Appl. 389, 1046–1058 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mastroeni, G.: Optimality conditions and image space analysis for vector optimization problems. In: Ansari, Q.H., Yao, J.-C. (eds.) Recent Developments in Vector Optimization, pp. 169–220. Springer, Berlin (2012)

    Chapter  Google Scholar 

  20. Bot, R.I., Csetnek, E.R., Moldovan, A.: Revisiting some duality theorems via the quasirelative interior in convex optimization. J. Optim. Theory Appl. 139, 67–84 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grad, A.: Quasi-relative interior-type constraint qualifications ensuring strong Lagrange duality for optimization problems with cone and affine constraints. J. Math. Anal. Appl. 361, 86–95 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jahn, J.: Vector Optimization—Theory, Applications and extensions. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  23. Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, New York (1989)

    Book  Google Scholar 

  24. Borwein, J.: Proper efficient points for maximizations with respect to cones. SIAM J. Control Optim. 15, 57–63 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. Limber, M.A., Goodrich, R.K.: Quasi interiors, Lagrange multipliers, and \(L^p\) spectral estimation with lattice bounds. J. Optim. Theory Appl. 78, 143–161 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guu, S.M., Li, J.: Vector quasi-equilibrium problems: separation, saddle points and error bounds for the solution set. J. Glob. Optim. 58, 751–767 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gong, X.-H.: Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior. J. Math. Anal. Appl. 307, 12–31 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Brecker, W.W., Kassay, G.: A systematization of convexity concepts for sets and functions. J. Convex Anal. 4, 109–127 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Lehmann, R., Oettli, W.: The theorem of the alternative, the key-theorem, and the vector-maximum problem. Math. Program. 8, 332–344 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Grad, S.M.: Characterizations via linear scalarization of minimal and properly minimal elements. Optim. Lett. 12, 915–922 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jameson, G.J.O.: Ordered Linear Spaces. Lecture Notes in Mathematics, vol. 141. Springer, Heidelberg (1970)

    Book  MATH  Google Scholar 

  32. Klee, V.L.: Separation properties of convex cones. Proc. Am. Math. Soc. 6, 313–318 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bao, T.Q., Mordukhovich, B.S.: Relative Pareto minimizers for multiobjective problems: existence and optimality conditions. Math. Program. Ser. A 122, 301–347 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Flores-Bazán, F., Hernández, E.: A unified vector optimization problem: complete scalarizations and applications. Optimization 60, 1399–1419 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Flores-Bazán, F., Hernández, E.: Optimality conditions for a unified vector optimization problem with not necessarily preordering relations. J. Glob. Optim. 56, 299–315 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, J., Mastroeni, G.: Image convexity of generalized systems with infinite-dimensional image and applications. J. Optim. Theory Appl. 69, 91–115 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Benson, H.P.: An improved definition of proper efficiency for vector maximization with respect to cones. J. Math. Anal. Appl. 71, 232–241 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zeng, R., Caron, R.J.: Generalized Motzkin Gordan alternative theorems and vector optimization problems. J. Optim. Theory Appl. 131, 281–289 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tardella, F.: On the image of a constrained extremum problem and some applications to the existence of a minimum. J. Optim. Theory Appl. 60, 93–104 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  41. Dines, L.L.: On the mapping of quadratic forms. Bull. Am. Math. Soc. 47, 494–498 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  42. Flores-Bazán, F., Opazo, F.: Characterizing the convexity of joint-range for a pair of inhomogeneous quadratic functions and strong duality. Minimax Theory Appl. 1, 257–290 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research, for the first author, was supported in part by CONICYT-Chile through FONDECYT 118-1316 and PIA/Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento AFB170001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabián Flores-Bazán.

Additional information

Communicated by Jafar Zafarani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Bazán, F., Mastroeni, G. & Vera, C. Proper or Weak Efficiency via Saddle Point Conditions in Cone-Constrained Nonconvex Vector Optimization Problems. J Optim Theory Appl 181, 787–816 (2019). https://doi.org/10.1007/s10957-019-01486-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01486-y

Keywords

Mathematics Subject Classification

Navigation