Skip to main content
Log in

On Generalized Bolza Problem and Its Application to Dynamic Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider two classes of problems: unconstrained variational problems of Bolza type and optimal control problems with state constraints for systems governed by differential inclusions, both under fairly general assumptions, and prove necessary optimality conditions for both of them. The proofs using techniques of variational analysis are rather short, compared to the existing proofs, and the results seem to cover and extend the now available. The key step in the proof of the necessary conditions for the second problem is an equivalent reduction to one or a sequence of reasonably simple versions of the first.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Actually, it will be sufficient to assume that L(tx(t), y(t)) is measurable if so are x(t) and y(t)

References

  1. Clarke, F.H.: Necessary conditions in dynamic optimization. Mem. AMS 816, 113 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Vinter, R.B.: Optimal Control. Birkhauser, Basel (2000)

    MATH  Google Scholar 

  3. Ioffe, A.D.: Necessary and sufficient conditions for a local minimum 1. Reduction theorem and first order conditions. SIAM J. Control Optim. 17, 245–251 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ioffe, A.D., Tikhomirov, V.M.: Theory of Extremal Problems, Nauka, Moscow 1974 (in Russian) (English transl: North Holland) (1979)

  5. Rockafellar, R.T.: Existence theorems for general control problems of Bolza and Lagrange. Adv. Math. 15, 312–333 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clarke, F.H.: The generalized problem of Bolza. SIAM J. Control Optim. 14, 682–699 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clarke, F.H.: The maximum principle under minimal hypotheses. SIAM J. Control Optim. 14, 1078–1091 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Loewen, P.D.: Optimal control via nonsmooth analysis. In: CRM Proceedings and Lecture Notes, vol. 2. AMS (1993)

  9. Ioffe, A.D.: Euler–Lagrange and Hamiltonian formalisms in dynamic optimization. Trans. Am. Math. Soc. 349, 2871–2900 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ioffe, A.D., Rockafellar, R.T.: The Euler and Weierstrass conditions for nonsmooth variational problems. Calc. Var. PDEs 4, 59–87 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Smirnov, G.V.: Discrete approximations and optimal solutions to differential inclusions, Kibernetika (Kiev) 1991, (1), 76–79 (in Russian); [English transl.: Cybernetics 27(1), 101–107 (1991)]

  12. Loewen, P.D., Rockafellar, R.T.: Optimal control of unbounded differential inclusions. SIAM J. Control Optim. 32, 442–470 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mordukhovich, B.S.: Optimization and finite difference approximations of nonconvex differential inclusions with free time. In: Mordukhovich, B.S., Sussmann, H.J. (eds.) Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, pp. 153–202. Springer, Berlin (1996)

    Chapter  Google Scholar 

  14. Vinter, R.B., Zheng, H.: The extended Euler–Lagrange conditions in nonconvex variational problems. SIAM J. Control Optim. 35, 56–77 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  16. Clarke, F.H., Ledyaev, Yu.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, Berlin (1998)

    MATH  Google Scholar 

  17. Ioffe, A.D.: Variational Analysis of Regular Mappings. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  18. Penot, J.-P.: Calculus Without Derivatives, Graduate Texts in Mathematics, vol. 266. Springer, Berlin (2012)

    Google Scholar 

  19. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983)

    MATH  Google Scholar 

  20. Bogolyubov, N.N.: Sur quelques méthodes nouvelles dans le calcul des variations. Ann. Math. Pure Appl. Ser. 4 7, 249–271 (1930)

    Article  MATH  Google Scholar 

  21. Ioffe, A.D.: Necessary conditions in nonsmooth optimization. Math. Oper. Res. 9, 159–189 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Arutyunov, A.V., Vinter, R.B.: A simple finite approximations proof of the Pontryagin maximum principle, under deduced differentiability Hypotheses. Set Valued Anal. 12, 5–24 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I wish to express my gratitude to the anonymous referee for helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. Ioffe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioffe, A.D. On Generalized Bolza Problem and Its Application to Dynamic Optimization. J Optim Theory Appl 182, 285–309 (2019). https://doi.org/10.1007/s10957-019-01485-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01485-z

Keywords

Mathematics Subject Classification

Navigation