Skip to main content
Log in

A Boundedness Result for Minimizers of Some Polyconvex Integrals

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider polyconvex functionals of the Calculus of Variations defined on maps from the three-dimensional Euclidean space into itself. Counterexamples show that minimizers need not to be bounded. We find conditions on the structure of the functional, which force minimizers to be locally bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51, 355–426 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mingione, G.: Singularities of minima: a walk in the wild side of the calculus of variations. J. Glob. Optim. 40, 209–223 (2008)

    Article  MATH  Google Scholar 

  3. Fusco, N., Hutchinson, J.: Partial regularity in problems motivated by nonlinear elasticity. SIAM J. Math. Anal. 22, 1516–1551 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fuchs, M., Seregin, G.: Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity. Algebra i Analiz 6, 128–153 (1994)

    MATH  Google Scholar 

  5. Fuchs, M., Reuling, J.: Partial regularity for certain classes of polyconvex functionals related to non linear elasticity. Manuscr. Math. 87, 13–26 (1995)

    Article  MATH  Google Scholar 

  6. Passarelli di Napoli, A.: A regularity result for a class of polyconvex functionals. Ricerche Mat. 48, 379–393 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Esposito, L., Mingione, G.: Partial regularity for minimizers of degenerate polyconvex energies. J. Convex Anal. 8, 1–38 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Hamburger, C.: Partial regularity of minimizers of polyconvex variational integrals. Calc. Var. Partial Differ. Equ. 18, 221–241 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carozza, M., Passarelli di Napoli, A.: Model problems from nonlinear elasticity: partial regularity results. ESAIM Control Opt. Calc. Var. 13, 120–134 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carozza, M., Leone, C., Passarelli di Napoli, A., Verde, A.: Partial regularity for polyconvex functionals depending on the Hessian determinant. Calc. Var. Partial Differ. Equ. 35, 215–238 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fusco, N., Hutchinson, J.: Partial regularity and everywhere continuity for a model problem from non-linear elasticity. J. Aust. Math. Soc. Ser. A 57, 158–169 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fuchs, M., Seregin, G.: Holder continuity for weak estremals of some two-dimensional variational problems related to non linear elasticity. Adv. Math. Sci. Appl. 7, 413–425 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Cupini, G., Leonetti, F., Mascolo, E.: Local boundedness for minimizers of some polyconvex integrals. Arch. Ration. Mech. Anal. 224, 269–289 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Leonetti, F.: Maximum principle for vector-valued minimizers of some integral functionals. Boll. Unione Mat. Ital. A 5, 51–56 (1991)

    MathSciNet  MATH  Google Scholar 

  15. D’Ottavio, A., Leonetti, F., Musciano, C.: Maximum principle for vector-valued mappings minimizing variational integrals. Atti Sem. Mat. Fis. Modena 46 Suppl., 677–683 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Leonetti, F., Siepe, F.: Maximum principle for vector-valued minimizers of some integral functionals. J. Convex Anal. 12, 267–278 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Leonetti, F., Siepe, F.: Bounds for vector valued minimizers of some integral functionals. Ricerche Mat. 54, 303–312 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Leonetti, F., Petricca, P.V.: Bounds for some minimizing sequences of functionals. Adv. Calc. Var. 4, 83–100 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leonetti, F., Petricca, P.V.: Bounds for vector valued minimizers of some relaxed functionals. Complex Var. Elliptic Equ. 58, 221–230 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sverák, V.: Regularity properties for deformations with finite energy. Arch. Ration. Mech. Anal. 100, 105–127 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bauman, P., Owen, N., Phillips, D.: Maximum principles and a priori estimates for a class of problems from nonlinear elasticity. Ann. Inst. Henri Poincare Anal. Non Lineaire 8, 119–157 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bauman, P., Phillips, D., Owen, N.: Maximal smoothness of solutions to certain Euler–Lagrange equations from nonlinear elasticity. Proc. R. Soc. Edinb. Sect. A 119, 241–263 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bauman, P., Owen, N., Phillips, D.: Maximum principles and a priori estimates for an incompressible material in nonlinear elasticity. Commun. Partial Differ. Equ. 17, 1185–1212 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bauman, P., Phillips, D.: Univalent minimizers of polyconvex functionals in two dimensions. Arch. Ration. Mech. Anal. 126, 161–181 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bevan, J.: A condition for the Hölder regularity of local minimizers of a nonlinear elastic energy in two dimensions. Arch. Ration. Mech. Anal. 225, 249–285 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Leonetti, F.: Pointwise estimates for a model problem in nonlinear elasticity. Forum Math. 18, 529–534 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gao, H., Leonetti, F., Macri, M., Petricca, P.V.: Regularity for minimizers with positive Jacobian. Preprint (2017)

  28. Ball, J.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Appl. Math. Sci. vol. 78. Springer, New York (2008)

  30. De Giorgi, E.: An example of a discontinuous solution to an elliptic variational problem. Boll. Unione Mat. Ital. 4(1), 135–137 (1968). (in Italian)

    Google Scholar 

  31. Sverák, V., Yan, X.: A singular minimizer of a smooth strongly convex functional in three dimensions. Calc. Var. Partial Differ. Equ. 10, 213–221 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mooney, C., Savin, O.: Some singular minimizers in low dimensions in the calculus of variations. Arch. Ration. Mech. Anal. 221, 1–22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Giaquinta, M.: Growth conditions and regularity, a counterexample. Manuscr. Math. 59, 245–248 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Marcellini, P.: Un example de solution discontinue d’un problème variationnel dans le cas scalaire. Preprint 11, Istituto Matematico “U. Dini” Università di Firenze (1987)

  35. Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105, 267–284 (1989)

    Article  MATH  Google Scholar 

  36. Marcellini, P.: Regularity and existence of solutions of elliptic equations with \(p-q\)-growth conditions. J. Differ. Equ. 90, 1–30 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hong, M.C.: Some remarks on the minimizers of variational integrals with non standard growth conditions. Boll. Un. Mat. Ital. A 6, 91–101 (1992)

    MathSciNet  MATH  Google Scholar 

  38. Esposito, L., Leonetti, F., Mingione, G.: Sharp regularity results for functionals with \((p, q)\) growth. J. Differ. Equ. 204, 5–55 (2004)

    Article  MATH  Google Scholar 

  39. Fonseca, I., Maly, J., Mingione, G.: Scalar minimizers with fractal singular sets. Arch. Ration. Mech. Anal. 172, 295–307 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Moscariello, G., Nania, L.: Hölder continuity of minimizers of functionals with non standard growth conditions. Ricerche Mat. 40, 259–273 (1991)

    MathSciNet  MATH  Google Scholar 

  41. Fusco, N., Sbordone, C.: Some remarks on the regularity of minima of anisotropic integrals. Commun. Partial Differ. Equ. 18, 153–167 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing, Singapore (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referee for carefully reading the manuscript and for the useful remarks. M. Carozza, R. Giova and F. Leonetti have been supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). H. Gao thanks NSFC (10371050) and NSF of Hebei Province (A2015201149) for their support. R. Giova has been partially supported by Universitá degli Studi di Napoli “Parthenope” through the Project “Sostegno alla ricerca individuale (annualitá 2015-2016-2017)” and the Project “Sostenibilità, esternalità e uso efficiente delle risorse ambientali”(triennio 2017-2019). F. Leonetti acknowledges also the support of UNIVAQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Leonetti.

Additional information

Communicated by Bernard Dacorogna.

Appendix: Comparison Between Two Structures

Appendix: Comparison Between Two Structures

Lemma A.1

We assume that \(F^{\alpha }, G^{\alpha }: {\mathbb {R}}^3 \mapsto [0, +\infty [\) and \(H:{\mathbb {R}} \mapsto [0, +\infty [\); let \(p, q, r \in ]0, +\infty [\) with \(p \ne 2\). Then, it is false that

$$\begin{aligned} \sum \limits _{\alpha = 1}^{3} F^{\alpha }(\xi ^{\alpha }) + \sum \limits _{\alpha = 1}^{3} G^{\alpha }((\mathrm {adj}_2 \xi )^{\alpha }) + H( \det \xi ) = |\xi |^p + |\mathrm {adj}_2 \xi |^q + | \det \xi |^r \end{aligned}$$
(76)

for every \(\xi \in {\mathbb {R}}^{3 \times 3}\).

Proof

We argue by contradiction: if (76) holds true, then we can use (76) with

$$\begin{aligned} \xi = \left( \begin{array}{lll} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 \end{array} \right) \end{aligned}$$
(77)

and we get

$$\begin{aligned} \text{ adj }_2\xi = \left( \begin{array}{lll} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 \end{array} \right) , \end{aligned}$$
(78)

with \(\det \xi = 0\), so that

$$\begin{aligned} \sum \limits _{\alpha = 1}^{3} F^{\alpha }((0, 0, 0)) + \sum \limits _{\alpha = 1}^{3} G^{\alpha }((0, 0, 0)) + H( 0 ) = 0; \end{aligned}$$
(79)

we keep in mind that \(F^{\alpha }, G^{\alpha }, H \ge 0\) and we get

$$\begin{aligned} F^{\alpha }((0, 0, 0)) = G^{\alpha }((0, 0, 0)) = H( 0 ) = 0, \end{aligned}$$
(80)

for every \(\alpha = 1, 2, 3\). Now we use (76) with

$$\begin{aligned} \xi = \left( \begin{array}{lll} t &{} 0 &{} 0\\ 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 \end{array} \right) \end{aligned}$$
(81)

and we get

$$\begin{aligned} \text{ adj }_2\xi = \left( \begin{array}{lll} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 \end{array} \right) , \end{aligned}$$
(82)

with \(\det \xi = 0\), so that

$$\begin{aligned} F^{1}((t, 0, 0)) + F^{2}((0, 0, 0)) + F^{3}((0, 0, 0)) + \sum \limits _{\alpha = 1}^{3} G^{\alpha }((0, 0, 0)) + H( 0 ) = |t|^p;\quad \end{aligned}$$
(83)

we keep in mind (80) and we get

$$\begin{aligned} F^{1}((t, 0, 0)) = |t|^p, \end{aligned}$$
(84)

for every \(t \in {\mathbb {R}}\). In a similar manner, taking

$$\begin{aligned} \xi = \left( \begin{array}{lll} 0 &{} 0 &{} 0\\ t &{} 0 &{} 0\\ 0 &{} 0 &{} 0 \end{array} \right) , \end{aligned}$$
(85)

we get

$$\begin{aligned} F^{2}((t, 0, 0)) = |t|^p, \end{aligned}$$
(86)

for every \(t \in {\mathbb {R}}\). In the same way, taking

$$\begin{aligned} \xi = \left( \begin{array}{lll} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0\\ t &{} 0 &{} 0 \end{array} \right) , \end{aligned}$$
(87)

we get

$$\begin{aligned} F^{3}((t, 0, 0)) = |t|^p, \end{aligned}$$
(88)

for every \(t \in {\mathbb {R}}\). Eventually, we take

$$\begin{aligned} \xi = \left( \begin{array}{lll} 1 &{} 0 &{} 0\\ 1 &{} 0 &{} 0\\ 1 &{} 0 &{} 0 \end{array} \right) \end{aligned}$$
(89)

and (76) implies

$$\begin{aligned} \sum \limits _{\alpha = 1}^{3} F^{\alpha }((1, 0, 0)) + \sum \limits _{\alpha = 1}^{3} G^{\alpha }((0, 0, 0)) + H( 0 ) = 3^{p/2}; \end{aligned}$$
(90)

we use (80), (84), (86), (88) and we get

$$\begin{aligned} 3 = 3^{p/2}: \end{aligned}$$
(91)

such an equality is a contradiction, since \(p \ne 2\). This ends the proof of Lemma A.1.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carozza, M., Gao, H., Giova, R. et al. A Boundedness Result for Minimizers of Some Polyconvex Integrals. J Optim Theory Appl 178, 699–725 (2018). https://doi.org/10.1007/s10957-018-1335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1335-0

Keywords

Mathematics Subject Classification

Navigation