Skip to main content
Log in

Transversality in Variational Analysis

  • Invited Paper
  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We discuss various aspects of newly developed extension of the classical transversality theory to variational analysis and optimization theory. In particular, we give interpretations in transversality terms of some key results (relating to subdifferential calculus, necessary optimality conditions and linear convergence of alternating projections) and prove a set-valued version of the Thom transversality theorem for semi-algebraic objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There are of course weaker qualification conditions. The Abadie qualification condition is probably the best known. But all of them, like subtransversality condition in the theorem, guarantee only the existence of a set of Lagrange multipliers with \(\lambda >0\), not normality of the problem.

  2. There is a third equivalent property known as the pseudo-Lipschitz or Aubin property of the inverse mapping \(F^{-1}\). However, we do not need it here.

  3. All subsequent results are valid for a much broader class of definable sets—see, for example, [14].

  4. I am thankful to the referee who brought my attention to a very recent paper [30] that also contains a (different) proof of the implication subtransversality \(\Rightarrow \) intrinsic transversality for convex sets in Euclidean spaces.

References

  1. Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Transversality and alternating projections for nonconvex sets. Found. Comput. Math. 15, 1637–1651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, New York (1998)

    Book  MATH  Google Scholar 

  3. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternate projections. Set-Valued Var. Anal. 21, 1–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Noll, R., Rondepierre, A.: On local convergence of the method of alternating projections. Found. Comput. Math. 16, 425–455 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for alternating and averaged nonconvex projections. Found. Comput. Math. 9, 485–513 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guillemin, V., Pollack, A.: Differential Topology. Prentice Hall, Upper Saddle River (1976)

    MATH  Google Scholar 

  7. Hirsch, M.W.: Differential Topology. Spinger, New York (1976)

    Book  MATH  Google Scholar 

  8. Ioffe, A.D.: Metric regularity and subdifferential calculus. Uspehi Mat. Nauk 55(3), 103–162 (2000) (in Russian). English translation: Russian Math. Surveys, 55(3), 501–558 (2000)

  9. Penot, J.-P.: Calculus Without Derivatives, Graduate Texts in Mathematics, vol. 266. Springer, New York (2012)

    Google Scholar 

  10. Ioffe, A.D.: On the theory of subdifferentials. Adv. Nonlinear Anal. 1, 47–120 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. Springer, New York (2006)

    Google Scholar 

  12. Borwein, J.M., Ioffe, A.D.: Proximal analysis in smooth spaces. Set-Valued Anal. 4, 1–24 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings, 2nd edn. Springer, New York (2014)

    MATH  Google Scholar 

  14. van den Dries, L., Miller, C.: Geometric categories and o-minimal structures. Duke Math. J. 84, 497–540 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kaloshin, V.Y.: A geometric proof of the existence of Whitney stratification. Mosc. Math. J. 5, 125–133 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Ioffe, A.D.: Critical values of set-valued mappings with stratifiable graphs. Extensions of Sard and Smale-Sard theorems. Proc. Am. Math. Soc. 136, 3111–3119 (2008)

    Article  MATH  Google Scholar 

  17. Ioffe, A.D.: Variational analysis and mathematical economics 2. Nonsmooth regular economies. Adv. Math. Econ. 14, 17–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Clarke, F.H., Ledyev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    Google Scholar 

  19. Dolecki, S.: Tangency and differentiation, some applications of convergence theory. Ann. Math. Pura Appl. 130, 223–255 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ioffe, A.D.: Approximate subdifferentials and applications 3. The metric theory. Mathematika 36, 1–38 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kruger, A.Y.: About regularity of collections of sets. Set-Valued Anal. 14, 187–206 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ioffe, A.D.: Metric regularity—a survey. J. Australian Math. Soc. 101(2), 188–243 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ioffe, A.D.: Metric regularity—a survey. J. Australian Math. Soc. 101(3), 376–417 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ioffe, A.D.: Necessary and sufficient conditions for a local minimum. SIAM J. Control Optim. 17, 245–287 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mangasarian, O.L.: Exact penalty functions in nonlinear programming. Math. Program. 17, 251–269 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ioffe, A.D.: Euler–Lagrange and Hamiltonian formalisms in dynamic optimization. Trans. Am. Math. Soc. 349, 2871–2900 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Loewen, P.D.: Optimal Control via Nonsmooth Analysis, CRM Proceedings, Lecture Notes, vol. 2, AMS (1993)

  28. Vinter, R.B.: Optimal Control. Birkhauser, Boston (2000)

    MATH  Google Scholar 

  29. Kruger, A.Y., Luke, D.R., Thao, D.H.: Set regularity and feasibility problems. Math. Program. doi:10.1007/s10107 016-1039x

  30. Kruger, A.Y.: About intrinsic transversality of pairs of sets, arXiv:1701.082.46v1

  31. Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1, 185–212 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gurin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding a common point of convex sets. USSR Comput. Math. Math. Phys. 7, 1–24 (1967)

    Google Scholar 

  33. Ioffe, A.D.: Variational analysis and mathematical economics 2. Nonsmooth regular economies. Adv. Math. Econ. 14, 17–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shannon, C.: On prevalent transversality theorem for Lipschitz functions. Proc. Am. Math. Soc. 134, 2755–2765 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problem. SIAM J. Optim. 23, 2397–2419 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Borwein, J.M.: Generalizations, examples and counterexamples in analysis and optimization. Set-Valued Var. Anal. doi:10.1007/s10107-016-1039x

Download references

Acknowledgements

I am deeply thankful to the anonymous referee for very attentive reading that allowed to eliminate many misprints and ambiguities in the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. Ioffe.

Additional information

To the memory of Jon Borwein and Vladimir Demyanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioffe, A.D. Transversality in Variational Analysis. J Optim Theory Appl 174, 343–366 (2017). https://doi.org/10.1007/s10957-017-1130-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1130-3

Keywords

Mathematics Subject Classification

Navigation