Skip to main content

Advertisement

Log in

On Finite Linear Systems Containing Strict Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper deals with linear systems containing finitely many weak and/or strict inequalities, whose solution sets are referred to as evenly convex polyhedral sets. The classical Motzkin theorem states that every (closed and convex) polyhedron is the Minkowski sum of a convex hull of finitely many points and a finitely generated cone. In this sense, similar representations for evenly convex polyhedra have been recently given by using the standard version for classical polyhedra. In this work, we provide a new dual tool that completely characterizes finite linear systems containing strict inequalities and it constitutes the key for obtaining a generalization of Motzkin theorem for evenly convex polyhedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klee, V.: Some characterizations of convex polyhedra. Acta Math. 102, 79–107 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Klee, V.: Convex polytopes and linear programming. In: Proceedings of the IBM Scientific Computing Symposium on Combinatorial Problems, New York, pp. 123–158 (1966)

  3. Kuhn, H.W., Tucker, A.W. (eds.): Linear Inequalities and Related Systems, vol. 38. Princeton University Press, Princeton (1956)

    MATH  Google Scholar 

  4. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics. Wiley, Chichester (1986)

    Google Scholar 

  5. Stoer, J., Witzgall, C.: Convexity and Optimization in Finite Dimensions I. Springer, Berlin (1970)

    Book  MATH  Google Scholar 

  6. Bagnara, R., Hill, P.M., Zaffanella, E.: Applications of polyhedral computations to the analysis and verification of hardware and software systems. Theor. Comput. Sci. 410, 4672–4691 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex polyhedra and the Parma Polyhedra Library. In: Proceedings of the 9th International Static Analysis Symposium, Madrid, pp. 213–229 (2002)

  8. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Springer, Berlin (2004)

    MATH  Google Scholar 

  9. Murty, K.G.: Optimization for Decision Making. Linear and Quadratic Models. International Series in Operations Research & Management Science. Springer, New York (2010)

    Google Scholar 

  10. Farkas, J.: Theorie der einfachen Ungleichungen. J. Reine Angew. Math. 124, 1–27 (1902)

    MathSciNet  MATH  Google Scholar 

  11. Szilágyi, P.: Nonhomogeneous linear theorems of the alternative. Pure Math. Appl. 10, 141–159 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Kuhn, H.W.: Solvability and consistency for linear equations and inequalities. Amer. Math. Mon. 63, 217–232 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  13. Minkowski, H.: Geometrie der Zahlen (Erste Lieferung). Teubner, Leipzig (1896)

    Google Scholar 

  14. Weyl, H.: Elementare theorie der konvexen polyeder. Comment. Math. Helv. 7, 290–306 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  15. Motzkin, T.S.: Beiträge zur theorie der linearen ungleichungen. Azriel, Jerusalem (1936). Transl. In: Cantor, D., Gordon, B., Rothschild, B. (eds.) Theodore S. Motzkin: Selected Papers, pp. 1–80. Birkhäuser, Boston (1983)

  16. Zhu, Y.J.: Generalizations of some fundamental theorems on linear inequalities. Acta Math. Sin. 16, 25–39 (1966)

    MathSciNet  MATH  Google Scholar 

  17. Goberna, M.A., Jornet, V., Puente, R.: Optimización Lineal: Teoría Métodos y Modelos. McGraw-Hill, Madrid (2004)

    Google Scholar 

  18. Goberna, M.A., Jeyakumar, V., Dihn, N.: Dual characterizations of set containments with strict convex inequalities. J. Glob. Optim. 34, 33–54 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fenchel, W.: A remark on convex sets and polarity. Comm. Sém. Math. Univ. Lund 1952 (Tome Suppl.), 82–89 (1952)

  20. Goberna, M.A., Jornet, V., Rodríguez, M.M.L.: On linear systems containing strict inequalities. Linear Algebra Appl. 360, 151–171 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goberna, M.A., Rodríguez, M.M.L.: Analyzing linear systems containing strict inequalities via evenly convex hulls. Eur. J. Oper. Res. 169, 1079–1095 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Walkup, D.W., Wets, R.J.: A Lipschitzian characterization of convex polyhedra. Proc. Am. Math. Soc. 23, 167–173 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kannan, R.: Lattice translates of a polytope and the Frobenius problem. Combinatorica 12, 161–177 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bagnara, R., Hill, P.M., Zaffanella, E.: Not necessarily closed convex polyhedra and the double description method. Form. Asp. Comput. 17, 222–257 (2005)

    Article  MATH  Google Scholar 

  25. Zheng, X.Y.: Pareto solutions of polyhedral-valued vector optimization problems in Banach spaces. Set-Valued Var. Anal. 17, 389–408 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, X.Q., Yen, N.D.: Structure and weak sharp minimum of the Pareto solution set for piecewise linear multiobjective optimization. J. Optim. Theory Appl. 147, 113–124 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fang, Y.P., Meng, K., Yang, X.Q.: Piecewise linear multicriteria programs: the continuous case and its discontinuous generalization. Oper. Res. 60, 398–409 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fang, Y.P., Huang, N.J., Yang, X.Q.: Local smooth representations of parametric semiclosed polyhedra with applications to sensitivity in piecewise linear programs. J. Optim. Theory Appl. 155, 810–839 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Goberna, M.A., López, M.A.: Linear Semi-Infinite Optimization. Wiley, Chichester (1998)

    MATH  Google Scholar 

  30. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  31. Fang, Y.P., Meng, K.W., Yang, X.Q.: On minimal generators for semi-closed polyhedra. Optimization 64, 761–770 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by MINECO of Spain and ERDF of EU, Grants MTM2014-59179-C2-1-P and ECO2016-77200-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Vicente-Pérez.

Additional information

Communicated by Nicolas Hadjisavvas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, M.M.L., Vicente-Pérez, J. On Finite Linear Systems Containing Strict Inequalities. J Optim Theory Appl 173, 131–154 (2017). https://doi.org/10.1007/s10957-017-1079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1079-2

Keywords

Mathematics Subject Classification

Navigation