Skip to main content
Log in

Globalizing Stabilized Sequential Quadratic Programming Method by Smooth Primal-Dual Exact Penalty Function

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

An iteration of the stabilized sequential quadratic programming method consists in solving a certain quadratic program in the primal-dual space, regularized in the dual variables. The advantage with respect to the classical sequential quadratic programming is that no constraint qualifications are required for fast local convergence (i.e., the problem can be degenerate). In particular, for equality-constrained problems, the superlinear rate of convergence is guaranteed under the only assumption that the primal-dual starting point is close enough to a stationary point and a noncritical Lagrange multiplier (the latter being weaker than the second-order sufficient optimality condition). However, unlike for the usual sequential quadratic programming method, designing natural globally convergent algorithms based on the stabilized version proved quite a challenge and, currently, there are very few proposals in this direction. For equality-constrained problems, we suggest to use for the task linesearch for the smooth two-parameter exact penalty function, which is the sum of the Lagrangian with squared penalizations of the violation of the constraints and of the violation of the Lagrangian stationarity with respect to primal variables. Reasonable global convergence properties are established. Moreover, we show that the globalized algorithm preserves the superlinear rate of the stabilized sequential quadratic programming method under the weak conditions mentioned above. We also present some numerical experiments on a set of degenerate test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wright, S.J.: Superlinear convergence of a stabilized SQP method to a degenerate solution. Comput. Optim. Appl. 11, 253–275 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hager, W.W.: Stabilized sequential quadratic programming. Comput. Optim. Appl. 12, 253–273 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fischer, A.: Local behavior of an iterative framework for generalized equations with nonisolated solutions. Math. Program. 94, 91–124 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wright, S.J.: Modifying SQP for degenerate problems. SIAM J. Optim. 13, 470–497 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Izmailov, A.F., Solodov, M.V.: Newton-Type Methods for Optimization and Variational Problems. Springer Series in Operations Research and Financial Engineering. Springer International Publishing, Switzerland (2014)

    Book  MATH  Google Scholar 

  6. Fernández, D., Solodov, M.: Stabilized sequential quadratic programming for optimization and a stabilized Newton-type method for variational problems. Math. Program. 125, 47–73 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Izmailov, A.F., Solodov, M.V.: Stabilized SQP revisited. Math. Program. 122, 93–120 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Di Pillo, G., Grippo, L.: A new class of augmented Lagrangians in nonlinear programming. SIAM J. Control Optim. 17, 618–628 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (1982)

    MATH  Google Scholar 

  10. Bertsekas, D.P.: Enlarging the region of convergence of Newton’s method for constrained optimization. J. Optim. Theory Appl. 36, 221–252 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: A relaxed constant positive linear dependence constraint qualification and applications. Math. Program. 135, 255–273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Izmailov, A.F., Solodov, M.V., Uskov, E.I.: Global convergence of augmented Lagrangian methods applied to optimization problems with degenerate constraints, including problems with complementarity constraints. SIAM J. Optim. 22, 1579–1606 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Glad, S.T.: Properties of updating methods for the multipliers in augmented Lagrangian. J. Optim. Theory Appl. 28, 135–156 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gill, P.E., Robinson, D.P.: A primal-dual augmented Lagrangian. Comput. Optim. Appl. 51, 1–25 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gill, P.E., Robinson, D.P.: A globally convergent stabilized SQP method. SIAM J. Optim. 23, 1983–2010 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gill, P.E., Kungurtsev, V., Robinson, D.P.: A regularized SQP method with convergence to second-order optimal points. UCSD Center for computational mathematics technical report CCoM-13-4 (2013)

  17. Gill, P.E., Kungurtsev, V., Robinson, D.P.: A globally convergent stabilized SQP method: superlinear convergence. UCSD Center for Computational mathematics technical report CCoM-13-4 (2014)

  18. Izmailov, A.F., Solodov, M.V., Uskov, E.I.: Combining stabilized SQP with the augmented Lagrangian algorithm. Comput. Optim. Appl. 62, 405–429 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Izmailov, A.F., Krylova, A.M., Uskov, E.I.: Hybrid globalization of stabilized sequential quadratic programming method. In: Bereznyov, V.A. (ed.) Theoretical and Applied Problems of Nonlinear Analysis, pp. 47–66. Computing Center RAS, Moscow (2011). (in Russian)

    Google Scholar 

  20. Fernández, D., Pilotta, E.A., Torres, G.A.: An inexact restoration strategy for the globalization of the sSQP method. Comput. Optim. Appl. 54, 595–617 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Martínez, J.M., Pilotta, E.A.: Inexact restoration methods for nonlinear programming: advances and perspectives. In: Qi, L., Teo, K.L., Yang, X.Q. (eds.) Optimization and Control with Applications,pp. 271–292. Springer, New York (2005)

  22. DEGEN. http://w3.impa.br/optim/DEGEN_collection.zip

  23. Izmailov, A.F., Solodov, M.V.: On attraction of Newton-type iterates to multipliers violating second-order sufficiency conditions. Math. Program. 117, 271–304 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Izmailov, A.F., Solodov, M.V.: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it. TOP 23, 1–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Izmailov, A.F., Kurennoy, A.S.: Abstract Newtonian frameworks and their applications. SIAM J. Optim. 23, 2369–2396 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Izmailov, A.F., Solodov, M.V.: On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers. Math. Program. 126, 231–257 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12, 979–1006 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. ALGENCAN. http://www.ime.usp.br/egbirgin/tango/

  29. Bonnans, J.F., Gilbert, JCh., Lemaréchal, C., Sagastizábal, C.: Numerical Optimization: Theoretical and Practical Aspects, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  30. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mostafa, E.M.E., Vicente, L.N., Wright, S.J.: Numerical behavior of a stabilized SQP method for degenerate NLP problems. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) Global Optimization and Constraint Satisfaction. Lecture Notes in Computer Science 2861, pp. 123–141. Springer, Berlin (2003)

    Google Scholar 

  32. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research is supported by the Russian Foundation for Basic Research Grant 14-01-00113, by the Russian Science Foundation Grant 15-11-10021, by CNPq Grants PVE 401119/2014-9 and 302637/2011-7 (Brazil), and by FAPERJ. The authors also thank the three anonymous referees for their evaluation and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Solodov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izmailov, A.F., Solodov, M.V. & Uskov, E.I. Globalizing Stabilized Sequential Quadratic Programming Method by Smooth Primal-Dual Exact Penalty Function. J Optim Theory Appl 169, 148–178 (2016). https://doi.org/10.1007/s10957-016-0889-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0889-y

Keywords

Mathematics Subject Classification

Navigation