Skip to main content
Log in

On the Braess Paradox with Nonlinear Dynamics and Control Theory

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We show the existence of the Braess paradox for a traffic network with nonlinear dynamics described by the Lighthill–Whitham–Richards model for traffic flow. Furthermore, we show how one can employ control theory to avoid the paradox. The paper offers a general framework applicable to time-independent, uncongested flow on networks. These ideas are illustrated through examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Throughout this paper, \(\mathbf {{C}^{k}} ([a,b];{{\mathbb {R}}}_+)\) denotes the set of functions defined on the real interval \([a,b]\), attaining values in \({{\mathbb {R}}}_+\) whose \(k\)th derivative is defined and continuous on \([a,b]\).

  2. Also called average latency of the system or social cost of the network.

  3. Also called social optimum for the system.

References

  1. Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1968). English translation: on a paradox of traffic planning. Transp. Sci. 39, 446–450 (2005)

  2. Nagurney, A., Boyce, D.: Preface to “On a paradox of traffic planning”. Transp. Sci. 39, 443–445 (2005)

    Article  Google Scholar 

  3. Frank, M.: The Braess paradox. Math. Program. 20, 283–302 (1981)

    Article  MATH  Google Scholar 

  4. Hagstrom, J.N., Abrams, R.A.: Characterizing Braess’s paradox for traffic networks. In: Proceedings of IEEE 2001 Conference on Intelligent Transportation Systems, pp. 837–842 (2001)

  5. Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 29, 236–259 (2002)

    Article  MathSciNet  Google Scholar 

  6. Steinberg, R., Zangwill, W.I.: The prevalence of Braess’ paradox. Transp. Sci. 17, 301–318 (1983)

    Article  Google Scholar 

  7. Pala, M.G., Baltazar, S., Liu, P., Sellier, H., Hackens, B., Martins, F., Bayot, V., Wallart, X., Desplanque, L., Huant, S.: Transport inefficiency in branched-out mesoscopic networks: an analog of the Braess paradox. Phys. Rev. Lett. 108, 076802 (2012)

    Article  Google Scholar 

  8. Cohen, J.E., Horowitz, P.: Paradoxical behaviour of mechanical and electrical networks. Nature 352, 699–701 (1991)

    Article  Google Scholar 

  9. Baker, L.: Removing roads and traffic lights speeds urban travel. Scientific American, January 19, (2009)

  10. Knödel, W.: Graphentheoretische Methoden und ihre Anwendungen. Springer, Berlin (1969)

    Book  MATH  Google Scholar 

  11. Youn, H., Gastner, M. T., Jeong, H.: Price of anarchy in transportation networks: Efficiency and optimality control. Phys. Rev. Lett. 101, 128701 (2008). Erratum, loc. cit. 102, 049905 (2009)

  12. Kolata, G.: What if they closed 42nd Street and nobody noticed? New York Times, December 25, (1990)

  13. Arnott, R., Small, K.: Dynamics of traffic congestion. Amer. Scientist 82, 446–455 (1994)

    Google Scholar 

  14. Vidal, J.: Heart and soul of the city. The Guardian, November 1, (2006)

  15. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  16. Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge (2005)

    Google Scholar 

  17. Roughgarden, T.: On the severity of Braess’s paradox: designing networks for selfish users is hard. J. Comput. Syst. Sci. 72, 922–953 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A 229, 317–345 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  19. Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956)

    Article  MathSciNet  Google Scholar 

  20. Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws. Springer, New York (2007)

    Google Scholar 

  21. Holden, H., Risebro, N.H.: A mathematical model of traffic flow on a network of unidirectional roads. SIAM J. Math. Anal. 26, 999–1017 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Garavello, M., Piccoli, B.: Traffic Flow on Networks. American Institute of Mathematical Sciences, Springfield (2006)

    MATH  Google Scholar 

  23. Bressan, A., Han, K.: Nash equilibria for a model of traffic flow with several groups of drivers. ESAIM Control Optim. Calc. Var. 18, 969–986 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bressan, A., Han, K.: Existence of optima and equilibria for traffic flow on networks. Netw. Heterog. Media 8, 627–648 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dafermos, S., Nagurney, A.: On some traffic equilibrium theory paradoxes. Transp. Sci. 18B, 101–110 (1984)

    MathSciNet  Google Scholar 

  26. Colombo, R.M., Marson, A.: A Hölder continuous ODE related to traffic flow. Proc. R. Soc. Edinb. Sect. A 133, 759–772 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wardrop, J.G.: Some theoretical aspects of road traffic research. ICE Proc. Eng. Div. 1(3), 325–378 (1952)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Research Council of Norway and by the Fund for International Cooperation of the University of Brescia.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinaldo M. Colombo.

Additional information

Communicated by Michael Patriksson.

Appendix: Technical Details

Appendix: Technical Details

Lemma 6.1

Let (q) hold. Then, the speed \(v = v (\rho )\), defined by

$$\begin{aligned} v (\rho ) = \left\{ \begin{array}{ll} q' (0), &{}\quad \mathrm {if}\, \rho = 0,\\ q (\rho ) / \rho , &{}\quad \mathrm {if }\rho > 0,\\ \end{array} \right. \end{aligned}$$

is well defined, continuous in \([0, \rho _m]\), strictly positive and weakly decreasing.

Proof

Continuity follows from l’Hôpital’s rule. Moreover,

$$\begin{aligned} v' (\rho ) = \left\{ \begin{array}{ll} \frac{\rho \, q' (\rho ) - q (\rho )}{\rho ^2}, &{} \text{ if }\,\rho > 0,\\ \frac{1}{2} \, q'' (0), &{} \text{ if } \rho = 0, \end{array} \right. \quad v'' (\rho ) = \left\{ \begin{array}{ll@{}} \frac{q'' (\rho )}{\rho } - 2 \frac{q' (\rho )}{\rho ^2} + 2 \frac{q (\rho )}{\rho ^3}, &{} \text{ if } \rho > 0,\\ \frac{1}{3} q''' (0), &{} \text{ if } \rho = 0. \end{array} \right. \end{aligned}$$

The concavity of \(q\) implies that \(q' (0) \ge q (\rho )/\rho \ge q' (\rho )\). Hence, \(v' \le 0\). \(\square \)

Lemma 6.2

If (q) holds, the map \(\rho :\vartheta \mapsto \rho (\vartheta )\) with \(q\left( \rho (\vartheta )\right) = \vartheta \varphi \) satisfies:

  1. 1.

    \(\rho \in \mathbf {{C}^{2}} ([0,1]; [0,1])\) and \(\rho (0) = 0\);

  2. 2.

    \(\rho ' (\vartheta ) > 0\) and \(\rho '' (\vartheta ) > 0\) for all \(\vartheta \in [0,1]\);

  3. 3.

    if \(q\) is strictly convex, then \(\rho '' (\vartheta ) > 0\) for all \(\vartheta \in [0,1]\).

Proof

Existence and regularity of \(\rho \) are immediate. By (q) and \(q (\rho (\vartheta )) = \vartheta \, \varphi \), it follows that \(\rho (0) = 0, \,\rho ' (\vartheta ) = \frac{\varphi }{q'\left( \rho (\vartheta )\right) } > 0\) and \(\rho '' (\vartheta ) = - \frac{\varphi ^2 \, q''\left( \rho (\vartheta )\right) }{\left( q'\left( \rho (\vartheta )\right) \right) ^3} \ge 0\), and the latter inequality is strict as soon as \(q\) is strictly convex. \(\square \)

Lemma 6.3

Let (q) hold. Then, the map \(\vartheta \mapsto 1/v\left( \rho (\vartheta )\right) \) is weakly increasing. If, moreover, \(q''' (\rho ) \le 0\) for \(\rho \in [0,1]\), then the map \(\vartheta \mapsto 1/v\left( \rho (\vartheta )\right) \) is convex.

Proof

We find \(\frac{\mathrm {d}}{\mathrm {d}\vartheta } \left( \frac{1}{v\left( \rho (\vartheta )\right) }\right) = - \frac{v'\left( \rho (\vartheta )\right) \, \rho ' (\vartheta )}{\left( v\left( \rho (\vartheta )\right) \right) ^2} \ge 0\). Moreover,

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}\vartheta } \left( \frac{1}{v\left( \rho (\vartheta )\right) }\right)= & {} - \frac{v'\left( \rho (\vartheta )\right) \, \rho ' (\vartheta )}{\left( v\left( \rho (\vartheta )\right) \right) ^2} = \left( \frac{1}{q\left( \rho (\vartheta )\right) \, q'\left( \rho (\vartheta )\right) } - \frac{\rho (\vartheta )}{\left( q\left( \rho (\vartheta )\right) \right) ^2} \right) \varphi ,\\ \frac{\mathrm {d}^2}{\mathrm {d}\vartheta ^2} \left( \frac{1}{v\left( \rho (\vartheta )\right) }\right)= & {} - 2 \, \frac{\rho ' (\vartheta ) \, \varphi }{\left( q\left( \rho (\vartheta )\right) \right) ^3}\\&\times \left[ \frac{1}{2} \left( \frac{q\left( \rho (\vartheta )\right) }{q'\left( \rho (\vartheta )\right) }\right) ^2 q''\left( \rho (\vartheta )\right) + q\left( \rho (\vartheta )\right) - \rho (\vartheta ) \, q'\left( \rho (\vartheta )\right) \right] . \end{aligned}$$

Call \(f (\rho ) = \frac{1}{2} \left( \frac{q(\rho )}{q'(\rho )}\right) ^2 q''(\rho ) + q(\rho ) - \rho \, q'(\rho )\). Observe that \(f (0) = 0\) and

$$\begin{aligned} f' (\rho ) = \frac{1}{2} \left( \frac{q(\rho )}{q'(\rho )}\right) ^2 q'''(\rho ) + \frac{\left( q (\rho ) - \rho \, q' (\rho )\right) q'' (\rho )}{q' (\rho )} - \frac{q (\rho ) \, \left( q'' (\rho )\right) ^2}{\left( q' (\rho )\right) ^3} \le 0, \end{aligned}$$

thereby completing the proof. \(\square \)

Asking \(q''' (\rho ) \le 0\) is sufficient, but not necessary, for the travel time convexity.

Proof of Proposition 3.1

If \(f \in \mathbf {{C}^{2}} ({{\mathbb {R}}}_+; {{\mathbb {R}}})\) is convex and increasing, then also \(x \mapsto x\,f (x)\) is convex and increasing. By Lemma 6.2, for \(i=1, \ldots ,m\), the map \(\xi \mapsto \tau _{r_i} (\xi ) \, \xi \) is convex on \([0,1]\). Hence, also the map \(\vartheta \mapsto \sum _i \tau _{r_i} (\vartheta _i) \, \vartheta _i\) is convex on \([0,1]^n\). Since \(\varGamma _{ij} \in \{0,1\}\), also the map \(\vartheta \mapsto T (\vartheta )\) is convex. \(\square \)

Proof of Theorem 3.1

By Definition 3.3, the configuration \(\vartheta ^N_1 = \vartheta ^N_2 = 0\) is clearly an equilibrium, the only relevant time being the equilibrium

$$\begin{aligned} \bar{\tau } = \tau _\gamma (0,0) = 2 \tau _a (1) + \tau _e (1) = 2 \, \frac{\ell }{v\left( \rho (1)\right) } + \frac{\tilde{\ell }}{\tilde{v}\left( \tilde{\rho } (1)\right) }. \end{aligned}$$

By (7), it is also a Nash point, since \(\tau _a (0,0) = \tau _\beta (0,0) > \bar{\tau }\) and, by continuity, the same inequality holds in a neighborhood of \(\vartheta ^N\).

Assume there exists an other equilibrium point \(\bar{\vartheta }\) in the interior of \(S^2\). Then, by symmetry, \(\bar{\vartheta }_1 = \bar{\vartheta }_2\) and, by Definition 3.3,

$$\begin{aligned} \tau _b (\bar{\vartheta }_1) - \tau _a (1-\bar{\vartheta }_1) = \tau _e (1-2\bar{\vartheta }_1). \end{aligned}$$
(9)

By assumption, the left-hand side above is a strictly increasing function of \(\vartheta _1\), while the right-hand side is weakly decreasing, so that

$$\begin{aligned} \tau _e (1-2 \bar{\vartheta }_1)\le & {} \tau _e (1) < \tau _b (0) + \tau _a (0) - 2 \tau _a (1) \qquad \quad \left[ \text{ by } (7)\right] \\\le & {} \tau _b (0) + \tau _a (0) - 2 \tau _a (0) \le \tau _b (0) - \tau _a (0) \le \tau _b (\bar{\vartheta }_1) - \tau _a (1-\bar{\vartheta }_1), \end{aligned}$$

which contradicts (9). To prove the uniqueness of the Nash points, consider the configuration \((0,1)\). In this case, the only relevant time is \(\tau _\alpha (0,1)\) and

$$\begin{aligned} \tau _\alpha (1,0) = \tau _a (1) + \tau _b (1) > \tau _a (0) + \tau _b (0) = \tau _\beta (1,1), \end{aligned}$$

proving that \((1,0)\) is not a Nash point. The case of \((0,1)\) is entirely analogous.

Finally, \(\tau _\alpha (1/2,1/2) = \tau _b (1/2, 1/2)\) is the globally optimal time for the case of four roads, and the leftmost bound in (7) allows to complete the proof. \(\square \)

Lemma 6.4

Let the travel time \(\tau _a,\tau _b \in \mathbf {{C}^{0}} ([0,1]; {{\mathbb {R}}}_+)\) be non-decreasing and convex, at least one of the two being strictly convex. Then, there exists a map \(\varTheta \in \mathbf {{C}^{0}} ({{\mathbb {R}}}_+;[0, 1/2])\) such that the partition \(\left( \varTheta (\vartheta ), \varTheta (\vartheta )\right) \) is the point of global minimum of the mean travel time \(T\) defined in (6), (5), (8) over \(S^n\).

Proof

The travel time \(T\) is convex by Proposition 3.1. By symmetry, its point of minimum is of the type \((\vartheta ,\vartheta )\) and if \(\vartheta \in ]0, 1/2[\), then \(\frac{\mathrm {d}}{\mathrm {d}\vartheta } T (\vartheta ,\vartheta )=0\). Hence,

$$\begin{aligned} T (\vartheta , \vartheta )= & {} 2(1-\vartheta ) \, \tau _a (1-\vartheta ) + 2\vartheta \, \tau _b (\vartheta ) + (1-2\vartheta ) \tilde{\tau }_e , \\ \frac{\mathrm {d}}{\mathrm {d}\vartheta } T (\vartheta ,\vartheta )= & {} 2 \left( - \tau _a (1-\vartheta ) - (1-\vartheta ) \tau _a' (1-\vartheta ) + \tau _b (\vartheta ) + \vartheta \, \tau _b' (\vartheta ) + \tilde{\tau } \right) , \\ \frac{\mathrm {d}^2}{\mathrm {d}\vartheta ^2} T (\vartheta ,\vartheta )= & {} 2\left( 2 \tau _a' (1-\vartheta ) + (1-\vartheta ) \tau _a'' (1-\vartheta ) + 2 \tau _b' (\vartheta ) + \vartheta \tau _b'' (\vartheta ) \right) > 0, \end{aligned}$$

so that \(\vartheta \mapsto T (\vartheta ,\vartheta )\) is strictly convex and it admits a unique point of minimum \(\varTheta (\tilde{\tau })\) in \(]0, 1/2[\). By the implicit function theorem, \(\varTheta \) is continuous. \(\square \)

Lemma 6.5

Let the travel times \(\tau _a,\tau _b \in \mathbf {{C}^{0}} ([0,1]; {{\mathbb {R}}}_+)\) be non-decreasing and convex, at least one of them being strictly convex. Then, there exists a \(\tilde{T} \in \mathbf {{C}^{0}} ([0, 1/2]; {{\mathbb {R}}}_+)\) such that assigning the travel time \(\tilde{T} (\vartheta )\) on road \(e\) makes the configuration \((\vartheta ,\vartheta )\) the unique local Nash point in the sense of Definition 3.3.

Proof

Given \(\vartheta \in [0,1/2]\), we seek \(\tilde{\tau }\) such that \((\vartheta ,\vartheta )\) is an equilibrium point. To this aim, we solve \(\tau _a (\vartheta ,\vartheta ) = \tau _b (\vartheta ,\vartheta )\) together with \(\tau _a (\vartheta ,\vartheta ) = \tau _\gamma (\vartheta ,\vartheta )\). By symmetry considerations, the former equality is satisfied for \(\vartheta \in [0, 1/2]\). The latter is equivalent to: \(\tau _a (1-\vartheta ) + \tau _b (\vartheta ) = 2 \tau _a (1-\vartheta ) + \tilde{\tau }\). Therefore, we set

$$\begin{aligned} \tilde{T} (\vartheta ) = \left\{ \begin{array}{l@{\quad }l} \tau _b (\vartheta ) - \tau _a (1-\vartheta ), &{}\text{ if } \tau _b (\vartheta ) \ge \tau _a (1-\vartheta ),\\ 0, &{} \text{ if } \tau _b (\vartheta ) < \tau _a (1-\vartheta ). \end{array} \right. \end{aligned}$$

By construction, \((\vartheta ,\vartheta )\) is an equilibrium configuration in the sense of Definition 3.1, once the travel time \(\tilde{\tau }\) along the road \(e\) is set equal end \(\tilde{T} (\vartheta )\).

When \(\vartheta \in ]0, 1/2[\), to prove that \((\vartheta ,\vartheta )\) is a local Nash point, thanks to the present symmetries, it is sufficient to check that for all small \(\varepsilon >0\) we have \(\tau _\alpha (\vartheta +\varepsilon , \vartheta ) > \tau _\gamma (\vartheta ,\vartheta ), \,\tau _\alpha (\vartheta +\varepsilon , \vartheta -\varepsilon ) > \tau _\beta (\vartheta ,\vartheta ), \,\tau _\gamma (\vartheta -\varepsilon , \vartheta ) > \tau _\alpha (\vartheta ,\vartheta )\), or,

$$\begin{aligned} \tau _b (\vartheta +\varepsilon ) - \tau _b (\vartheta ) + \tau _a (1-\vartheta ) - \tau _a(1-\vartheta -\varepsilon )> & {} 0,\\ \tau _a (1-\vartheta +\varepsilon ) - \tau _a (1-\vartheta -\varepsilon ) + \tau _b (\vartheta +\varepsilon ) - \tau _b (\vartheta -\varepsilon )> & {} 0,\\ \tau _a (1-\eta +\varepsilon ) - \tau _a (1-\vartheta )> & {} 0, \end{aligned}$$

and all these inequalities hold by the monotonicity of the travel times. \(\square \)

Proof of Theorem 4.1

Let \(\varTheta \) and \(\tilde{T}\) be as defined in Lemmas 6.4 and 6.5. Set \(\varUpsilon :[0,1/2] \rightarrow [0,1/2], \,\varUpsilon = \varTheta \circ \tilde{T}\), and call \(\vartheta _*\) a fixed point for \(\varUpsilon \). Then, \((\vartheta _*, \vartheta _*)\) is a local Nash point, if \(\tilde{\tau }_* = \tilde{T} (\vartheta _*)\) is the travel time along road \(e\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombo, R.M., Holden, H. On the Braess Paradox with Nonlinear Dynamics and Control Theory. J Optim Theory Appl 168, 216–230 (2016). https://doi.org/10.1007/s10957-015-0729-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0729-5

Keywords

Mathematics Subject Classification

Navigation