Skip to main content
Log in

Augmented Lagrangian Methods for Transport Optimization, Mean Field Games and Degenerate Elliptic Equations

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Many problems from mass transport can be reformulated as variational problems under a prescribed divergence constraint (static problems) or subject to a time-dependent continuity equation, which again can be formulated as a divergence constraint but in time and space. The variational class of mean field games, introduced by Lasry and Lions, may also be interpreted as a generalization of the time-dependent optimal transport problem. Following Benamou and Brenier, we show that augmented Lagrangian methods are well suited to treat such convex but non-smooth problems. They include in particular Monge historic optimal transport problem. A finite-element discretization and implementation of the method are used to provide numerical simulations and a convergence study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. As recalled in Sect. 3, it is essential for the convergence of ALG2 that the operator \(\Lambda \) is injective; in mass transport problems, one can normalize potentials to have zero mean; under this normalization, the gradient operator is injective, but one cannot impose zero mean any more in the case of MFGs; this is why one has to add the terminal value as part of the operator \(\Lambda \) to make it injective.

  2. http://freefem.org.

References

  1. Villani, C.: Topics in Optimal Transportation. AMS Bookstore, Providence (2003)

    Book  MATH  Google Scholar 

  2. Villani, C.: Optimal Transport: Old and New. Springer, Berlin (2009)

    Book  Google Scholar 

  3. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fortin, M., Glowinski, R.: Augmented Lagrangian methods, volume 15 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1983). Applications to the numerical solution of boundary value problems. Translated from the French by B. Hunt and D.C. Spicer

  6. Benamou, J.-D.: Numerical resolution of an “unbalanced” mass transport problem. Math. Model. Numer. Anal. 37(5), 851–868 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buttazzo, G., Jimenez, C., Oudet, E.: An optimization problem for mass transportation with congested dynamics. SIAM J. Control Optim. 48(3), 1961–1976 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Papadakis, N., Peyré, G., Oudet, E.: Optimal transport with proximal splitting. SIAM J. Imaging Sci. 7(1), 212–238 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hug, R., Maitre, E., Papadakis, N.: Multi-physics Optimal Transportation and Image Interpolation (2014, preprint)

  10. De Pascale, L., Pratelli, A.: Sharp summability for Monge transport density via interpolation. ESAIM: Control Optim. Calc. Var. 10(4), 549–552 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Santambrogio, F.: Absolute continuity and summability of transport densities: simpler proofs and new estimates. Calc. Var. Partial Differ. Equ. 36(3), 343–354 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge–Kantorovich mass transfer problem. Mem. Am. Math. Soc. 137(653), viii+66 (1999)

  13. Ambrosio, L.: Lecture notes on optimal transport problems. In: Mathematical Aspects of Evolving Interfaces (Funchal, 2000), Lecture Notes in Mathematics, vol. 1812, pp. 1–52. Springer, Berlin, (2003)

  14. Carlier, G., Jimenez, C., Santambrogio, F.: Optimal transportation with traffic congestion and Wardrop equilibria. SIAM J. Control Optim. 47(3), 1330–1350 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Brasco, L., Carlier, G., Santambrogio, F.: Congested traffic dynamics, weak flows and very degenerate elliptic equations. J. Math. Pures Appl. 93(6), 652–671 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis d’ordre un et la résolution par pénalisation-dualité d’une classe de problèmes de dirichlet non-linéaires. Revue Francaise d’Automatique, Informatique et Recherche Opérationnelle 9, 41–76 (1975)

    MATH  MathSciNet  Google Scholar 

  17. Barrett, J.W., Prigozhin, L.: A mixed formulation of the Monge–Kantorovich equations. Math. Model. Numer. Anal. 41(6), 1041–1060 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Graber, P.J.: Optimal control of first-order Hamilton–Jacobi equations with linearly bounded Hamiltonian. Appl. Math. Optim. 70(2), 185–224 (2014)

  22. Graber, P.J., Cardaliaguet, P.: Mean field games systems of first order. ESAIM: Control Optim. Calc. Var. (2014)

  23. Cardaliaguet, P., Carlier, G., Nazaret, B.: Geodesics for a class of distances in the space of probability measures. Calc. Var. Partial Differ. Equ. 48(3–4), 395–420 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Achdou, Y., Camilli, F., Capuzzo-Dolcetta, I.: Mean field games: numerical methods for the planning problem. SIAM J. Control Optim. 50(1), 77–109 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Achdou, Y., Capuzzo-Dolcetta, I.: Mean field games: numerical methods. SIAM J. Numer. Anal. 48(3), 1136–1162 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Achdou, Y., Camilli, F., Capuzzo-Dolcetta, I.: Mean field games: convergence of a finite difference method. SIAM J. Numer. Anal. 51(5), 2585–2612 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Achdou, Y., Perez, V.: Iterative strategies for solving linearized discrete mean field games systems. Netw. Heterog. Media 7(2), 197–217 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element methods. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  29. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(3, Ser. A), 293–318 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  31. Benamou, J.D., Brenier, Y.: Mixed \(L^2\)-Wasserstein optimal mapping between prescribed density functions. J. Optim. Theory Appl. 111(2), 255–271 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the ANR, through the project ISOTACE (ANR-12-MONU-0013) and INRIA through the “action exploratoire” MOKAPLAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Carlier.

Additional information

Communicated by Giuseppe Buttazzo.

Appendix : Details of Step 2 for MFGs

Appendix : Details of Step 2 for MFGs

Let \(\gamma >0\) and \(\rho _1\ge 0\) be given, then define

$$\begin{aligned} N_2(\rho ):=:=\left\{ \begin{array}{ll} \frac{\gamma }{2} ( \rho -\rho _1)^2, &{}\quad \hbox {if } \rho \ge 0, \\ +\infty , &{}\quad \hbox {otherwise} \end{array}\right. , \, N_{1}(\rho ):=\left\{ \begin{array}{ll} \gamma \vert \rho -\rho _1\vert ,&{} \quad \hbox {if }\rho \ge 0, \\ +\infty , &{}\quad \hbox {otherwise.} \end{array}\right. \end{aligned}$$

For \(N=N_1, N_2\), we have to compute: \(N^*\) as well as the two proximal operators:

  • Terminal prox, given \(c_0\), solve:

    $$\begin{aligned} \inf _{c} \left\{ N^*(c)+\frac{r}{2} \vert c-c_0\vert ^2\right\} . \end{aligned}$$
    (45)
  • Quadratic Hamiltonian prox (recall that we have taken for simplicity \(H(p)=\frac{1}{2} \vert p\vert ^2\) in the MFG), given \((a_0,b_0)\in \mathbb {R}\times \mathbb {R}^d\), solve

    $$\begin{aligned} \inf _{(a,b)\in \mathbb {R}\times \mathbb {R}^d} \left\{ N^*\left( a+\frac{1}{2} \vert b\vert ^2 \right) +\frac{r}{2}\left( \vert a-a_0\vert ^2 + \vert b-b_0\vert ^2 \right) \right\} . \end{aligned}$$
    (46)

1.1 Proximal computations for \(N_2\):

The Legendre transform of \(N_2\) is explicitly given by

$$\begin{aligned} N_2^*(\lambda ):=\left\{ \begin{array}{ll} \frac{\lambda ^2}{2\gamma }+\lambda \rho _1, &{}\quad \hbox {if }\lambda \ge -\gamma \rho _1, \\ -\gamma \frac{\rho _1^2}{2}, &{}\quad \hbox {otherwise.} \end{array}\right. \end{aligned}$$

In this case, the solution of the terminal proximal problem (45) is:

$$\begin{aligned} c=\left\{ \begin{array}{ll} c_0, &{}\quad \hbox {if }c_0\le -\gamma \rho _1, \\ \frac{ r c_0-\rho _1}{ r+\gamma ^{-1}}, &{}\quad \hbox {otherwise} \end{array}\right. \end{aligned}$$
(47)

Let us consider now the Hamiltonian-prox problem (46). It is convenient to formulate the optimality condition for (46) by setting

$$\begin{aligned} \lambda :=\left( a+\frac{1}{2} \vert b\vert ^2\right) ,\; r\mu :=\left( N_2^*\right) '(\lambda )=\left( N_2^*\right) ' \left( a+\frac{1}{2} \vert b\vert ^2\right) \end{aligned}$$

we then have

$$\begin{aligned} a=a_0-\mu , \; b=\frac{b_0}{1+\mu }. \end{aligned}$$

Defining \(\lambda _0=a_0+\frac{1}{2} \vert b_0\vert ^2\), the optimal \((a,b)\) is given by

  • Case 1: \(\lambda \ge -\gamma \rho _1\) then \(\mu \) has to be a (non-negative) root of the (cubic) equation

    $$\begin{aligned} r \mu =\rho _1+\frac{\lambda }{\gamma }= \rho _1+\frac{1}{\gamma } \left( a_0-\mu +\frac{1}{2} \frac{\vert b_0\vert ^2}{(1+\mu )^2}\right) \end{aligned}$$
    (48)

    and the solvability of this equation on \(\mathbb {R}_+\) is equivalent to \(\lambda _0\ge -\gamma \rho _1\).

  • Case 2: \(\lambda _0<-\gamma \rho _1\) then \((a,b)=(a_0, b_0)\).

1.2 Prox computations for \(N_1\)

The Legendre transform of \(N_1\) is:

$$\begin{aligned} N_1^*(\lambda ):=\left\{ \begin{array}{ll} -\gamma \rho _1, &{}\quad \hbox {if }\lambda \le -\gamma , \\ \rho _1 \lambda ,&{}\quad \hbox {if } \lambda \in [ -\gamma , \gamma ]\\ +\infty , &{}\quad \hbox {otherwise}. \end{array}\right. \end{aligned}$$

Rewriting the proximal problem (45) as the inclusion \(0\in (c-c_0)+\frac{1}{r} \partial N_1^*(c)\) and distinguishing the different possible cases for \(\partial N_1^*(c)\), one finds

$$\begin{aligned} c=\left\{ \begin{array}{ll} c_0, &{}\quad \hbox {if } c_0<-\gamma \\ -\gamma ,&{}\quad \hbox {if } c_0\in [-\gamma , -\gamma +\frac{\rho _1}{r}], \\ c_0-\frac{\rho _1}{r}, &{}\quad \hbox {if } c_0\in ]-\gamma +\frac{\rho _1}{r}, \gamma +\frac{\rho _1}{r}[,\\ \gamma , &{}\quad \hbox {if } c_0 \ge \gamma +\frac{\rho _1}{r} . \end{array}\right. \end{aligned}$$

For the second problem (46) which corresponds to the conditions:

$$\begin{aligned} 0\in (a-a_0, b-b_0) +\frac{1}{ r} \partial N_1^*(\lambda )(1, b), \text { with } \lambda =a+\frac{1}{2} \vert b \vert ^2, \end{aligned}$$

we find as optimal \((a,b)\):

$$\begin{aligned} (a,b)\!=\!\left\{ \begin{array}{ll} (a_0, b_0),&{}\quad \hbox {if } \lambda _0 <-\gamma ,\\ (a(\mu ), b(\mu )), &{}\quad \hbox {with } \mu \!\in \! [0, \frac{\rho _1}{r}] \hbox { solving } (49) \hbox { (with } - \hbox {sign) if } \lambda _0^* \!\le \!-\gamma \!\le \! \lambda _0, \\ (a_0^*, b_0^*), &{}\quad \hbox {if } \lambda _0^*\in ]-\gamma , \gamma [,\\ (a(\mu ), b(\mu )),&{}\quad \hbox {with } \mu \ge \frac{\rho _1}{r} \hbox { solving } (49) \hbox {(with +sign) if }\lambda _0^*\ge \gamma , \end{array}\right. \end{aligned}$$

where we have defined

$$\begin{aligned} a_0^*:= & {} a_0-\frac{\rho _1}{r},\; b_0^*:=\frac{r b_0}{\rho _1+r}, \; \lambda _0^*:=a_0^*+\frac{1}{2} \vert b_0^*\vert ^2\nonumber \\ a(\mu ):= & {} (a_0-\mu ), \; b(\mu ):=\frac{b_0}{1+\mu },\nonumber \\ \pm \gamma= & {} (a_0-\mu )+\frac{1}{2} \frac{\vert b_0 \vert ^2}{(1+\mu )^2}. \end{aligned}$$
(49)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benamou, JD., Carlier, G. Augmented Lagrangian Methods for Transport Optimization, Mean Field Games and Degenerate Elliptic Equations. J Optim Theory Appl 167, 1–26 (2015). https://doi.org/10.1007/s10957-015-0725-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0725-9

Keywords

Mathematics Subject Classification

Navigation