Skip to main content
Log in

Stability and Controllability Issues in Mathematical Modeling of the Intensive Treatment of Leukemia

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We present a mathematical model of dynamic changes in clinical parameters following drug therapy for chronic myeloid leukemia (CML) using a system of ordinary differential equations (ODE), describing the interactions between effector T cells and leukemic cancer cells. The model successfully predicts clinical response to two separate drug therapies: targeted therapy with the tyrosine kinase inhibitor imatinib and immunotherapy with interferon alfa-2. Development of this model enables the identification of the treatment regimen for a determined time period, in order to reach an admissible concentration of cancer cells. To mathematically model the dynamics of CML progression, both without and with treatment, we have obtained the local and global stability and the local relative controllability conditions for this ODE system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Cancer Research Fund International (WCRF International) statistics (2008). http://www.wcrf.org/cancer_statistics/world_cancer_statistics.php

  2. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., Forman, D.: Statistics. CA Cancer J. Clin. 61, 69–90 (2011)

    Article  Google Scholar 

  3. Faderl, S., Talpaz, M., Estrov, Z., O’Brien, S., Kurzrock, R., Kantarjian, H.: The biology of chronic myeloid leukemia. N. Engl. J. Med. 341(3), 164–172 (1999)

    Article  Google Scholar 

  4. Druker, B.J.: Imatinib as a paradigm of targeted therapies. Adv. Cancer Res. 91, 1–30 (2004)

    Article  Google Scholar 

  5. Druker, B.J., Lydon, N.B.: Lessons learned from the development of an ABL tyrosine kinase inhibitor for chronic myelogenous leukemia. J. Clin. Investig. 105(1), 3–7 (2000)

    Article  Google Scholar 

  6. Druker, B.J.: Overcoming resistance to imatinib by combining targeted agents. Mol. Cancer Ther. 2, 225–226 (2003)

    Google Scholar 

  7. Nardi, V., Azam, M., Daley, G.Q.: Mechanisms and implications of imatinib resistance mutations in BCR-ABL. Curr. Opin. Hematol. 11, 35–43 (2004)

    Article  Google Scholar 

  8. Goldman, J.M.: Treatment strategies for CML. Best Pract. Res. Clin. Haematol. 22(3), 303–313 (2009)

    Article  Google Scholar 

  9. Campbell, J.D., Cook, G., Holyoake, T.L.: Evolution of bone marrow transplantation the original immunotherapy. Trends Immunol. 22(2), 88–92 (2001)

    Article  Google Scholar 

  10. Vonka, V.: Immunotherapy of chronic myeloid leukemia: present state and future prospects. Immunotherapy 2(2), 227–241 (2010)

    Article  Google Scholar 

  11. Burchert, A., Neubauer, A.: Interferon alpha and T-cell responses in chronic myeloid leukemia. Leuk. Lymphoma 46(2), 167–175 (2005)

    Article  Google Scholar 

  12. Burchert, A., Muller, M.C., Kostrewa, P., Erben, P., Bostel, T., Liebler, S., Hehlmann, R., Neubauer, A., Hochhaus, A.: Sustained molecular response with interferon alfa maintenance after induction therapy with imatinib plus interferon alfa in patients with chronic myeloid leukemia. J. Clin. Oncol. 28, 1429–1435 (2010)

    Article  Google Scholar 

  13. Bellomo, N., Preziosi, L.: Modelling and mathematical problems related to tumour evolution and its interaction with the immune system. Math. Comput. Model. 32, 413–452 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wodarz, D., Jansen, V.A.A.: A dynamical perspective of CTL cross-priming and regulation: implications for cancer immunology. Immunol. Lett. 86, 213–227 (2003)

    Article  Google Scholar 

  15. Bellomo, N., Bellouquid, A., Delitala, M.: Mathematical topics on the modelling complex multicellular systems and tumour immune cells competition. Math. Models Methods Appl. Sci. 14, 1683–1733 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. d’Onofrio, A.: A general framework for modeling tumor–immune system competition and immunotherapy: mathematical analysis and biomedical inferences. Phys D. 208, 220–235 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. d’Onofrio, A.: Tumor–immune system interaction: modeling the tumor-stimulated proliferation of effectors and immunotherapy. Math. Models Methods Appl. Sci. 16, 1375–1401 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kronik, N., Kogan, Y., Vainstein, V., Agur, Z.: Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol. Immunother. 57, 425–439 (2008)

    Article  Google Scholar 

  19. d’Onofrio, A., Gatti, F., Cerrai, P., Freschi, L.: Delay-induced oscillatory dynamics of tumour–immune system interaction. Math. Comput. Model. 51, 572–591 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Caravagna, G., Barbuti, R., d’Onofrio, A.: Fine-tuning anti-tumor immunotherapies via stochastic simulations. BMC Bioinform. 13(Suppl 4), S8 (2012)

    Article  Google Scholar 

  21. Vincent, P.C., Cronkite, E.P., Greenberg, M.L., Kirsten, C., Schiffer, L.M., Stryckmans, P.A.: Leukocyte kinetics in chronic myeloid leukemia. I. DNA synthesis time in blood and marrow myelocytes. Blood 33(6), 843–850 (1969)

    Google Scholar 

  22. Fokas, A.S., Keller, J.B., Clarkson, B.D.: A mathematical model of granulocytopoiesis and chronic myelogenous leukemia. Cancer 51, 2084–2091 (1991)

    Google Scholar 

  23. Moore, H., Li, N.K.: A mathematical model of chronic myelogenous leukemia (CML) and T cell interaction. J. Theor. Biol. 227, 513 (2004)

    Article  MathSciNet  Google Scholar 

  24. Komarova, N., Wodarz, D.: Drug resistance in cancer: principles of emergence and prevention. Proc. Natl. Acad. Sci. USA 102, 9714–9719 (2005)

    Article  Google Scholar 

  25. Michor, F., Hughes, T., Iwasa, Y., Branford, S., Shah, N., Sawyers, C., Nowak, M.: Dynamics of chronic myeloid leukemia. Nature 435, 1267–1270 (2005)

    Article  Google Scholar 

  26. Kim, P., Lee, P., Levy, D.: Dynamics and potential impact of the immune response to chronic myelogenous leukemia. PLoS Comput. Biol. 4, e1000095 (2008)

    Article  MathSciNet  Google Scholar 

  27. Paquin, D., Kim, P.S., Lee, P.P., Levy, D.: Strategic treatment interruptions during imatinib treatment of chronic myelogenous leukemia. Bull. Math. Biol. 73, 1082–1100 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nanda, S., Moore, H., Lenhart, S.: Optimal control of treatment in a mathematical model of chronic myelogenous leukemia. Math. Biosci. 210, 143 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ainseba, B., Benosman, C.: Optimal control for resistance and suboptimal response in CML. Math. Biosci. 227, 81–93 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Berezansky, L., Bunimovich-Mendrazitsky, S., Domoshnitsky, A.: A mathematical model with time-varying delays in the combined treatment of chronic myeloid leukemia. Adv. Differ. Equ. 217, 257–266 (2012)

    Google Scholar 

  31. Norton, L.: A Gompertzian model of human breast cancer growth. Cancer Res. 48, 7067–7071 (1988)

    Google Scholar 

  32. Laird, A.K.: Dynamics of tumor growth. Br. J. Cancer. 18, 490–502 (1964)

    Article  Google Scholar 

  33. d’Onofrio, A., Gandolfi, A.: Tumor eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. Math. Biosci. 191, 159–184 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. d’Onofrio, A., Gandolfi, A., Rocca, A.: The dynamics of tumour–vasculature interaction suggests low dose, time-dense antiangiogenic scheduling. Cell Prolif. 42, 317–329 (2009)

    Article  Google Scholar 

  35. d’Onofrio, A.: Metamodeling tumour–immune system interaction, tumour evasion and immunotherapy. Math. Comput. Model. 47, 614–637 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Gabasov, R., Kirillova, F.: Qualitative Theory of Optimal Processes. M. Nauka, Moscow (1972)

    Google Scholar 

  37. Breccia, M., Alimena, G.: Discontinuation of tyrosine kinase inhibitors and new approaches to target leukemic stem cells: treatment-free remission as a new goal in chronic myeloid leukemia. Cancer Lett. 347(1), 22–28 (2014)

    Article  Google Scholar 

  38. Jabbour, E., Fava, C., Kantarjian, H.: Advances in the biology and therapy of patients with chronic myeloid leukaemia. Best. Pract. Res. Clin. Haematol. 22, 395–407 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editors and the referees for their valuable comments and suggestions which improved the original submission of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bunimovich-Mendrazitsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezansky, L., Bunimovich-Mendrazitsky, S. & Shklyar, B. Stability and Controllability Issues in Mathematical Modeling of the Intensive Treatment of Leukemia. J Optim Theory Appl 167, 326–341 (2015). https://doi.org/10.1007/s10957-015-0717-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0717-9

Keywords

Mathematics Subject Classification

Navigation