Skip to main content
Log in

Primal-Dual Active-Set Methods for Large-Scale Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduce two primal-dual active-set methods for solving large-scale constrained optimization problems. The first method minimizes a sequence of primal-dual augmented Lagrangian functions subject to bounds on the primal variables and artificial bounds on the dual variables. The basic structure is similar to the well-known optimization package Lancelot (Conn, et al. in SIAM J Numer Anal 28:545–572, 1991), which uses the traditional primal augmented Lagrangian function. Like Lancelot, our algorithm may use gradient projection-based methods enhanced by subspace acceleration techniques to solve each subproblem and therefore may be implemented matrix-free. The artificial bounds on the dual variables are a unique feature of our method and serve as a form of dual regularization. Our second algorithm is a two-phase method. The first phase computes iterates using our primal-dual augmented Lagrangian algorithm, which benefits from using cheap gradient projections and matrix-free linear CG calculations. The final iterate produced during this phase is then used as input for phase two, which is a stabilized sequential quadratic programming method (Gill and Robinson in SIAM J Opt 1–45, 2013). Obtaining superlinear local convergence under weak assumptions is an important benefit of the transition to a stabilized sequential quadratic programming algorithm. Interestingly, the bound-constrained subproblem used in phase one is equivalent to the stabilized subproblem used in phase two under certain assumptions. This fact makes our choice of algorithms a natural one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shenoy, A., Heinkenschloss, M., Cliff, E.: Airfoil design by an all-at-once method. Int. J. Comput. Fluid Dyn. 11(1–2), 3–25 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bouchouev, I., Isakov, V.: Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets. Inverse Probl. 15, R95 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Feng, L., Linetsky, V., Morales, J.L., Nocedal, J.: On the solution of complementarity problems arising in American options pricing. Optim. Methods Softw. 26(4–5), 813–825 (2011). doi:10.1080/10556788.2010.514341

    Article  MATH  MathSciNet  Google Scholar 

  4. Robinson, D.P., Feng, L., Nocedal, J.M., Pang, J.-S.: Subspace accelerated matrix splitting algorithms for asymmetric and symmetric linear complementarity problems. SIAM J Optimiz.23(3), 1371–1397 (2013)

  5. Klibanov, M., Lucas, T.: Numerical solution of a parabolic inverse problem in optical tomography using experimental data. SIAM J. Appl. Math. 59: 1763–1789 (1999)

  6. Arridge, S.: Optical tomography in medical imaging. Inverse Probl. 15, R41 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Akcelik, V., Biros, G., Ghattas, O.: Parallel multiscale Gauss–Newton–Krylov methods for inverse wave propagation. In: Supercomputing, ACM/IEEE 2002 Conference (IEEE, 2002), pp. 41–41

  8. Laird, C., Biegler, L., van Bloemen Waanders, B., Bartlett, R.: Contamination source determination for water networks. J. Water Resour. Plan. Manag. 131(2), 125–134 (2005)

  9. Rao, C.V., Wright, S.J., Rawlings, J.B.: Application of interior-point methods to model predictive control. J. Optim. Theory Appl. 99(3), 723–757 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Shahzad, A., Kerrigan, E.C., Constantinides, G.A.: A warm-start interior-point method for predictive control. In: IET Conference Proceedings pp. 949–954(5) (2010). http://digital-library.theiet.org/content/conferences/10.1049/ic.2010.0409

  11. Engau, A., Anjos, M.F., Vannelli, A.: Operations research and cyber-infrastructure. Springer, New York (2009)

    Google Scholar 

  12. Engau, A., Anjos, M.F., Vannelli, A.: On interior-point warmstarts for linear and combinatorial optimization. SIAM J. Optim. 20(4), 1828–1861 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Birgin, E.G., Castillo, R., Martínez, J.M.: Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems. Comput. Optim. Appl. 31(1), 31–55 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kočvara, M., Stingl, M.: PENNON: a generalized augmented Lagrangian method for semidefinite programming. In: High Performance Algorithms and Software for Nonlinear Optimization (Erice, 2001), Applied Optimization, vol. 82, pp. 303–321. Kluwer, Norwell, MA (2003). doi:10.1007/978-1-4613-0241-4_14

  15. Moré, J.J., Toraldo, G.: Algorithms for bound constrained quadratic programming problems. Technical memorandum no. 117, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL (1988)

  16. Conn, A.R., Gould, N.I.M., Toint, P.L.: LANCELOT: a Fortran package for large-scale nonlinear optimization (Release A). In: Lecture Notes in Computation Mathematics 17. Springer Verlag, Berlin, Heidelberg, New York, London, Paris and Tokyo (1992)

  17. Boggs, P.T., Tolle, J.W.: Sequential quadratic programming. Acta Numer. 4, 1–51 (1995)

    Article  MathSciNet  Google Scholar 

  18. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gould, N.I.M., Robinson, D.P.: A second derivative SQP method: global convergence. SIAM J. Optim. 20(4), 2023–2048 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gould, N.I.M., Robinson, D.P.: A second derivative SQP method: local convergence and practical issues. SIAM J. Optim. 20(4), 2049–2079 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gould, N.I.M., Robinson, D.P.: A second derivative SQP method with a “trust-region-free” predictor step. IMA J. Numer. Anal. 32(2), 580–601 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Morales, J.L., Nocedal, J., Wu, Y.: A sequential quadratic programming algorithm with an additional equality constrained phase. IMA J. Numer. Anal. 32, 553–579 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Curtis, F.E., Johnson, T.C., Robinson, D.P., Wächter, A.: An inexact sequential quadratic optimization algorithm for nonlinear optimization. SIAM J. Optim. 24(3), 1041–1074 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Murray, W., Prieto, F.J.: A sequential quadratic programming algorithm using an incomplete solution of the subproblem. SIAM J. Optim. 5, 590–640 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Griva, I., Polyak, R.A.: Primal-dual nonlinear rescaling method with dynamic scaling parameter update. Math. program. 106(2), 237–259 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gill, P.E., Robinson, D.P.: A primal-dual augmented Lagrangian. Comput. Optim. Appl. 51, 1–25 (2012). doi:10.1007/s10589-010-9339-1

    Article  MATH  MathSciNet  Google Scholar 

  27. Gill, P.E., Robinson, D.P.: A globally convergent stabilized SQP method. SIAM J. Optim. 23(4), 1983–2010 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gill, P.E., Kungurtsev, V., Robinson, D.P.: A stabilized SQP method: global convergence. In: Center for Computational Mathematics Report CCoM 13-04. University of California, San Diego (2013)

  29. Gill, P.E., Kungurtsev, V., Robinson, D.P.: A stabilized SQP method: superlinear convergence. Center for Computational Mathematics Report CCoM 14-01. University of California, San Diego (2014)

  30. Nocedal, J., Wright, S.J.: Numer. Optim. Springer, New York (1999)

    Book  Google Scholar 

  31. Kočvara, M., Zowe, J.: An iterative two-step algorithm for linear complementarity problems. Numer. Math. 68(1), 95–106 (1994). doi:10.1007/s002110050050

    Article  MATH  MathSciNet  Google Scholar 

  32. Wright, S.J., Nowak, R.D., Figueiredo, M.A.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

    Article  MathSciNet  Google Scholar 

  33. Robinson, D.P.: Primal-dual methods for nonlinear optimization. Ph.D. thesis, Department of Mathematics, University of California San Diego, La Jolla, CA (2007)

  34. Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley, New York (1968)

    MATH  Google Scholar 

  35. Forsgren, A., Gill, P.E.: Primal-dual interior methods for nonconvex nonlinear programming. SIAM J. Optim. 8, 1132–1152 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  36. Conn, A.R., Gould, N.I.M., Toint, P.L.: A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28, 545–572 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  37. Bertsekas, D.P.: Constrained optimization and Lagrange multiplier methods. Computer Science and Applied Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1982)

    Google Scholar 

  38. Conn, A.R., Gould, N.I.M., Toint, PhL: Trust-Region Methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

    Book  MATH  Google Scholar 

  39. Saunders, M.A.: Cholesky-based methods for sparse least squares: the benefits of regularization. In: Adams, L., Nazareth, J.L. (eds) Linear and Nonlinear Conjugate Gradient-Related Methods, (SIAM Publications, Philadelphia, 1996), pp. 92–100. Proceedings of AMS-IMS-SIAM Joint Summer Research Conference, University of Washington, Seattle, WA (July 9–13, 1995)

  40. Wright, S.J.: Superlinear convergence of a stabilized SQP method to a degenerate solution. Comput. Optim. Appl. 11(3), 253–275 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  41. Hager, W.W.: Stabilized sequential quadratic programming. Comput. Optim. Appl. 12(1–3), 253–273 (1999). Computational optimization—a tribute to Olvi Mangasarian, Part I

    MATH  MathSciNet  Google Scholar 

  42. Wright, S.J.: Modifying SQP for degenerate problems. SIAM J. Optim. 13(2), 470–497 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  43. Oberlin, C., Wright, S.J.: Active set identification in nonlinear programming. SIAM J. Optim. 17(2), 577–605 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  44. Fernández, D., Solodov, M.: Stabilized sequential quadratic programming for optimization and a stabilized Newton-type method for variational problems. Math. Program. Ser. A 125, 47–73 (2010). doi:10.1007/s10107-008-0255-4

    Article  MATH  Google Scholar 

  45. Izmailov, A.F., Solodov, M.V.: On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers. Math. Program. 126(2, Ser. A), 231–257 (2011). doi:10.1007/s10107-009-0279-4

    Article  MATH  MathSciNet  Google Scholar 

  46. MathWorks Inc.: Natick, Massachusetts, Matlab User’s Guide (1992)

  47. Curtis, F.E., Jiang, H., Robinson, D.P.: An adaptive augmented Lagrangian method for large-scale constrained optimization. Math. Program. pp. 1–45 (2013). doi:10.1007/s10107-014-0784-y

  48. Baumrucker, B.T., Renfro, J.G., Biegler, L.T.: MPEC problem formulations and solution strategies with chemical engineering applications. Comput. Chem. Eng. 32(12), 2903–2913 (2008)

  49. Dirkse, S.: MPECLib: a collection of mathematical programs with equilibrium constraints. http://www.gamsworld.eu/mpec/mpeclib.htm (2004)

  50. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEst : a constrained and unconstrained testing environment with safe threads for mathematical optimization. Comput. Optim. Appl. (2014). doi:10.1007/s10589-014-9687-3

  51. Wolfe, P.: A technique for resolving degeneracy in linear programming. SIAM J. Appl. Math. 11, 205–211 (1963)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is grateful to the two referees whose comments and suggestions helped to significantly improve the paper. He is also grateful to Sven Leyffer from the Argonne National Laboratory for supplying the files used to solve the MPECS considered in Sect. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Robinson.

Additional information

Communicated by Stefan Ulbrich.

This author was supported by US National Science Foundation Grant DMS-1217153.

Appendix

Appendix

A detailed summary of the runs for algorithm ALTR, algorithm PDSQP, and our two-phase Algorithm 2 on the MPECS considered in Sect. 4 may be found in Table 1. Specifically, we indicate the name (Name) of the problem along with the number of variables (\(n\)) and the number of equality constraints (\(m\)) for the problem once it has been transformed to standard form. For algorithm ALTR, we also give the termination flag (Flag) and the number of major iterations (Iter.), which is equivalent to the number of bound-constrained QPs solved. For algorithm PDSQP, we give the termination flag (Flag) and the number of QPs solved (QPs), which is equivalent to the number of iterations. Finally, for our two-phase algorithm, we give the termination flag (Flag), the number of AL iterations (Iter.) performed in phase 1, and the number of QPs solved (QPs) by algorithm PDSQP in phase 2. The flags indicate whether an optimal solution was found (Opt.) or the maximum number of allowed iterations was reached (Max). The integers in parenthesis after the number of QPs solved indicate the total number of QP iterations (minor iterations) performed by the active-set solver.

Table 1 Performance of ALTR, PDSQP, and Algorithm 2 on the MPECS

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, D.P. Primal-Dual Active-Set Methods for Large-Scale Optimization. J Optim Theory Appl 166, 137–171 (2015). https://doi.org/10.1007/s10957-015-0708-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0708-x

Keywords

Mathematics Subject Classification

Navigation