Skip to main content
Log in

Stiffness and Strength Optimization of the Anisotropy Distribution for Laminated Structures

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we deal with the problem of optimizing the anisotropy distribution of a laminated structure in order to maximize, simultaneously, its stiffness and strength. For these two objectives, two functionals are considered: the compliance as a measure of the plate stiffness and a laminate-level failure index as a measure of the strength. To solve this optimization problem we used a two-step hierarchical strategy: in the first step the aim is to find the best distribution of the stiffness and strength anisotropic tensors of an equivalent homogenized plate, while in the second one the objective is to find at least one laminate lay-up satisfying the optimal properties obtained as result of the first step. The polar formalism has been used to represent both the stiffness and strength tensors and allowed us to find analytical solutions to the local minimizations of the two functionals. A test case is finally presented to show the effectiveness of the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Banichuk, N.V.: Problems and Methods of Optimal Structural Design. Plenum Press, New York (1983)

    Book  Google Scholar 

  2. Abrate, S.: Optimal design of laminates plates and shells. Compos. Struct. 29, 269–286 (1994)

    Article  Google Scholar 

  3. Gürdal, Z.: Design and Optimization of Laminated Composite Materials. Wiley-Interscience, Chichester (1999)

    Google Scholar 

  4. Ghiasi, H., Pasini, D., Lessard, L.: Optimum stacking sequence design of composite materials. Part I: constant stiffness design. Compos. Struct. 90, 1–11 (2009)

    Article  Google Scholar 

  5. Jibawy, A., Julien, C., Desmorat, B., Vincenti, A., Léné, F.: Hierarchical structural optimization of laminated plates using polar representation. Int. J. Solids Struct. 48, 2576–2584 (2011)

    Article  Google Scholar 

  6. Van Campen, J., Kassapoglou, C., Gürdal, Z.: Generating realistic laminate fiber angle distributions for optimal variable stiffness laminates. Compos. Part B 43, 354–360 (2011)

    Article  Google Scholar 

  7. De Leon, D.M., de Souza, C.E., Fonseca, J.S.O., Da Silva, R.G.A.: Aeroelastic tailoring using fiber orientation and topology optimization. Struct. Multidiscipl. Optim. 46, 663–677 (2012)

    Article  MATH  Google Scholar 

  8. Miki, M.: Material design of composite laminates with required in-plane elastic properties. In: Hayashi, T., Kawata, K., Umekawa, S. (eds.) Progress in Science and Engineering of Composites, pp. 1725–1731. ICCM-IV, Tokyo (1982)

    Google Scholar 

  9. Miki, M.: Design of laminated fibrous composite plates with required flexural stiffness. ASTM STP 864, 387–400 (1985)

    Google Scholar 

  10. Vannucci, P.: A note on the elastic and geometric bounds for composite laminates. J. Elast. 112, 199–215 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Allaire, G., Kohn, R.: Optimal design for minimum weight and compliance in plane stress using extremal micro structures. Eur. J. Mech. A Solids 12, 839–878 (1993)

    MATH  MathSciNet  Google Scholar 

  12. Allaire, G., Kohn, R.: Shape optimization by the homogenization method. Numer. Math. 76, 27–68 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Montemurro, M.: Optimal Design of Advanced Engineering Modular Systems Through a New Genetic Approach. PhD thesis, University Paris 6. http://tel.archives-ouvertes.fr/tel-00955533 (2012)

  14. Villaggio, P.: Mathematical Models for Elastic Structures. The University Press, Cambridge (1997)

    Book  Google Scholar 

  15. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 193, pp. 281–297 (1948)

  16. Jones, R.M.: Mechanics of Composite Materials. Taylor & Francis, London (1999)

    Google Scholar 

  17. Verchery, G.: Les invariants des tenseurs d’ordre 4 du type de l’élasticité. In: Proceeding of the Euromech Colloquium, vol. 115, pp. 93–104. Villard-de-Lans, France (1979)

  18. Vannucci, P.: Plane anisotropy by the polar method. Meccanica 40, 437–454 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Vannucci, P.: The polar analysis of a third order piezoelecticity-like plane tensor. Int. J. Solids Struct. 44, 7803–7815 (2007)

    Article  MATH  Google Scholar 

  20. Catapano, A., Desmorat, B., Vannucci, P.: Invariant formulation of phenomenological failure criteria for orthotropic sheets and optimisation of their strength. Math. Methods Appl. Sci. 35, 1842–1858 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Catapano, A.: Stiffness and Strength Optimisation of the Anisotropy Distribution for Laminated Structures. PhD thesis, University Paris 6. http://tel.archives-ouvertes.fr/tel-00952372 (2013)

  22. Vincenti, A., Desmorat, B.: Optimal orthotropy for minimum elastic energy by the polar method. J. Elast. 102, 55–78 (2010)

    Article  MathSciNet  Google Scholar 

  23. Julien, C.: Conception Optimale de l’Anisotropie dans les Structures Stratifiees à Rigiditè Variable par la Méthode Polaire-Génétique. PhD thesis, University Paris 6 (2010)

  24. Vannucci, P., Verchery, G.: A special class of uncoupled and quasi-homogeneous laminates. Compos. Sci. Technol. 61, 1465–1473 (2001)

    Article  Google Scholar 

  25. Vannucci, P.: Designing the elastic properties of laminates as an optimisation problem: a unified approach based on polar tensor invariants. Struct. Multidiscipl. Optim. 31, 378–387 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Vannucci, P., Vincenti, A.: The design of laminates with given thermal/hygral expansion coefficients: a general approach based upon the polar-genetic method. Compos. Struct. 79, 454–466 (2007)

    Article  Google Scholar 

  27. Montemurro, M., Vincenti, A., Vannucci, P.: Design of elastic properties of laminates with minimum number of plies. Mech. Compos. Mater. 48, 369–390 (2012)

    Article  Google Scholar 

  28. Montemurro, M., Vincenti, A., Vannucci, P.: A two-level procedure for the global optimum design of composite modular structures—application to the design of an aircraft wing. Part 1: theoretical formulation. J. Optim. Theory Appl. 155, 1–23 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Vincenti, A.: Conception et optimisation de composites par la méthode polaire et algorithmes génétiques. PhD thesis, University of Burgundy (2002)

  30. Vincenti, A., Ahmadian, M.R., Vannucci, P.: Bianca: a genetic algorithm to solve hard combinatorial optimisation problems in engineering. J. Glob. Optim. 48, 399–421 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Montemurro, M., Vincenti, A., Vannucci, P.: A two-level procedure for the global optimum design of composite modular structures—application to the design of an aircraft wing. Part 2: numerical aspects and examples. J. Optim. Theory Appl. 155, 24–53 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

FNR of Luxembourg, supporting the first author through Aides à la Formation Recherche Grant PHD-09-184, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Vannucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catapano, A., Desmorat, B. & Vannucci, P. Stiffness and Strength Optimization of the Anisotropy Distribution for Laminated Structures. J Optim Theory Appl 167, 118–146 (2015). https://doi.org/10.1007/s10957-014-0693-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0693-5

Keywords

Mathematics Subject Classification

Navigation