Skip to main content
Log in

The Existence of Optimal Controls for Problems Defined on Time Scales

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper we investigate the existence of optimal solutions for dynamic optimization problems defined on time scales. We use the classical convexity and seminormality conditions originating in the works of L. Tonelli and E. J. McShane for problems in the calculus of variations and in the works of L. Cesari, C. Olech, R. T. Rockafellar and others for problems in optimal control theory, thus extending these classical results to optimal control problems whose states satisfy a dynamic equation on an arbitrary time scale. As applications of our results we focus on three examples of time scales—the real line, the integers and a monotone sequence of points converging to one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cesari, L.: Optimization-Theory and Applications: Problems with Ordinary Differential Equations. vol. 17 of Applications of Applied Mathematics. Springer, New York (1983)

    Book  Google Scholar 

  2. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. An Introduction with Applications. Birkhäuser Boston Inc., Boston (2001)

    Book  Google Scholar 

  3. Hilger, S.: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results Math. 18(1–2), 18–56 (1990)

    Article  MathSciNet  Google Scholar 

  4. Guseinov, G.S.: Integration on time scales. J. Math. Anal. Appl. 285(1), 107–127 (2003)

    Article  MathSciNet  Google Scholar 

  5. Cabada, A., Vivero, D.R.: Expression of the Lebesgue \(\Delta \)-integral on time scales as a usual Lebesgue integral: application to the calculus of \(\Delta \)-antiderivatives. Math. Comput. Model. 43(1–2), 194–207 (2006)

    Article  MathSciNet  Google Scholar 

  6. Cabada, A., Vivero, D.R.: Criterions for absolute continuity on time scales. J. Diff. Equ. Appl. 11(11), 1013–1028 (2005)

    Article  MathSciNet  Google Scholar 

  7. Cesari, L.: Existence theorems for Lagrange problems in Sobolev spaces. In: Nonlinear Functional Analysis. Proceedings of the Symposium Pure Mathematics, XVIII, Part 1, Chicago, IL, 1968, pp. 39–49. American Mathematical Society, Providence, RI, (1970)

  8. Rockafellar, R.T.: Integrals which are convex functionals. Pac. J. Math. 24, 525–539 (1968)

    Article  MathSciNet  Google Scholar 

  9. Rockafellar, R.T., Wets, R.: Variational Analysis. vol. 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1998)

    Google Scholar 

  10. Peng, Y., Xiang, X., Jiang, Y.: Nonlinear dynamic systems and optimal control problems on time scales. ESAIM Control Optim. Calc. Var. 17(3), 654–681 (2011)

    Article  MathSciNet  Google Scholar 

  11. Gong, Y., Xiang, X.: A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales. J. Ind. Manag. Optim. 5(1), 1–10 (2009)

    MathSciNet  Google Scholar 

  12. Zhan, Z., Wei, W.: On existence of optimal control governed by a class of the first-order linear dynamic systems on time scales. Appl. Math. Comput. 215(6), 2070–2081 (2009)

    Article  MathSciNet  Google Scholar 

  13. Peng, Y., Xiang, X.: A class of nonlinear impulsive differential equation and optimal controls on time scales. Discret. Contin. Dyn. Syst. Ser. B 16(4), 1137–1155 (2011)

    Article  MathSciNet  Google Scholar 

  14. Zhan, Z.D., Wei, W., Li, Y.F.: Optimal control problem with terminal state constraint on time scales. Pac. J. Optim. 8(2), 387–404 (2012)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean A. Carlson.

Additional information

Giuseppe Buttazzo.

Appendix 1: Proof of Growth Condition (\(\mathbf {\mathrm {g}_2}\)) for the Economic Growth Model

Appendix 1: Proof of Growth Condition (\(\mathbf {\mathrm {g}_2}\)) for the Economic Growth Model

We first observe that since \(F'(\cdot )\) decreases from \(\infty \) to \(0\) there exists a \(x_\delta >0\) such that \(F'(x_\delta )=\delta \). Since \(F'' <0\) we have \(F(x)\le F(x_\delta )+F'(x_\delta )(x-x_\delta )\) for all \(x\ge 0\). Multiplying through by \(1/\mu (t) >0\) and rearranging the terms gives us

$$\begin{aligned} \frac{1}{\mu (t)}[F(x)-\delta x] \le \frac{B}{\mu (t)} \end{aligned}$$

for all \(t\in [0,1[_\mathbb T\) and all \(x\ge 0\), where \(B=F(x_\delta )-\delta x_\delta \). Similarly, for any \(\varepsilon >0\) there exists \(c_\varepsilon >0\) so that \(V'(c_\varepsilon )=(1-\beta )/\varepsilon \) and \(V'' <0\) gives us

$$\begin{aligned} \frac{1}{1-\beta }V(c)\le \frac{1}{1-\beta }V(c_\varepsilon )+\frac{1}{\varepsilon }(c-c_\varepsilon ) \end{aligned}$$

for all \(c\ge 0\) or, equivalently that

$$\begin{aligned} -c\le C_\varepsilon -\frac{\varepsilon }{1-\beta } V(c) \end{aligned}$$

for all \(c >0\), where \(C_\varepsilon = (\varepsilon /(1-\beta )) V(c_\varepsilon ) -c_\varepsilon \). Further since \(\mu (t) <1\) it follows that \(-c/\mu (t) \le -c\) so that we have

$$\begin{aligned} \frac{-c}{\mu (t)}\le -c \le C_\varepsilon -\frac{\varepsilon }{1-\beta } V(c). \end{aligned}$$

Combining the above gives us

$$\begin{aligned} \left| \frac{1}{\mu (t)}[F(x)-\delta x -c]\right| \le \left[ \frac{B}{\mu (t)} +C_\varepsilon \right] -\frac{\varepsilon }{1-\beta } V(c)=\psi _\varepsilon (t)-\frac{\varepsilon }{1-\beta } V(c), \end{aligned}$$

for all \((t,x,u)\in M=\{(s,y,v):\ s\in [0,1[_\mathbb T,\ y\ge 0,\ v\in U(t,x)\}\), where \(\psi _\varepsilon (t)=(B/\mu (t))+C_\varepsilon \) is locally \(\Delta \)-Lebesgue integrable, which is precisely growth condition \((\mathrm {g}_2)\).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlson, D.A. The Existence of Optimal Controls for Problems Defined on Time Scales. J Optim Theory Appl 166, 351–376 (2015). https://doi.org/10.1007/s10957-014-0674-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0674-8

Keywords

Mathematics Subject Classification

Navigation