Skip to main content
Log in

Anderson Localization in Discrete Random Displacements Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove spectral and strong dynamical localization in a random displacements model on the lattice, with singular (including Bernoulli) probability distribution of the displacements and an infinite-range site potential which can be asymmetric and sign-indefinite. Our techniques also apply to the models in continuous configuration spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aizenman, M., Elgart, A., Naboko, S., Schenker, J., Stolz, G.: Moment analysis for localization in random Schrödinger operators. Invent. Math. 163, 343–413 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Baker, J., Loss, M., Stolz, G.: Minimizing the ground state energy of an electron in a randomly deformed lattice. Commun. Math. Phys. 283, 397–415 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bernstein, S.N.: Sur l’extension du théorème limite du calcul des probabilités aux sommes des quantités dépendantes. Math. Annalen 97(1), 1–59 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berry, A.C.: The accuracy of the Gaussian approximation to the sum of independent random variates. Trans. Am. Math. Soc. 49, 122–136 (1941)

    Article  MATH  Google Scholar 

  5. Bourgain, J.: On localization for lattice Schrödinger operators involving Bernoulli variables. In: Geometric Aspects of Functional Analysis. Lecture Notes Math., vol. 1850. Springer, Berlin Heidelberg New-York (2004)

  6. Bourgain, J., Kenig, W.: On localization in the continuous Anderson–Bernoulli model in higher dimension. Invent. Math. 161, 389–426 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Buschmann, D., Stolz, G.: Two-parameter spectral averaging and localization for non-monotonic random operators. Trans. AMS 353, 635–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chulaevsky, V.: From fixed-energy localization analysis to dynamical localization: an elementary path. J. Stat. Phys. 154, 1391–1429 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Chulaevsky, V.: Localization in asymmetric random displacements models with infinite range of interaction. J. Stat. Phys. 172(4), 1164–1180 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Chulaevsky, V.: Universality of high-dimensional disorder and density of states under non-local interactions I. Infinite smoothness and localization. J. Spec. Theory 10(2), 515–560 (2020)

    Article  MATH  Google Scholar 

  11. Combes, J.M., Thomas, L.: Asymptotic behaviour of eigenfunctions for multi-particle Schrödinger operators. Commun. Math. Phys. 34, 251–263 (1973)

    Article  ADS  MATH  Google Scholar 

  12. Cramér, H.: Random variables and probability distributions. Cambridge tracts in mathematics and mathematical physics, vol. 36. Cambridge University Press, Cambridge (1937)

  13. Ding, J., Smart, C.: Localization near the edge for the Anderson Bernoulli model on the two dimensional lattice. Invent. Math. 219(2), 467–506 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding model. Commun. Math. Phys. 124, 285–299 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Elgart, A., Tautenhahn, M., Veselić, I.: Localization via fractional moments for models on Z with single-site potentials of finite support. J. Phys. A 43(8), 474–521 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Esseen, C.: Fourier analysis of distribution funtion. A mathematical study of the Laplace–Gaussian law. Acta Math. 77, 1–125 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2. Wiley, New York London Sidney (1966)

    MATH  Google Scholar 

  18. Germinet, F., Klein, A.: Bootstrap multi-scale analysis and localization in random media. Commun. Math. Phys. 222, 415–448 (2001)

    Article  ADS  MATH  Google Scholar 

  19. Kirsch, W., Stollmann, P., Stolz, G.: Anderson localization for random Schrödinger operators with long range interactions. Commun. Math. Phys. 195, 495–507 (1998)

    Article  ADS  MATH  Google Scholar 

  20. Klopp, F.: Localization for semiclassical continuous random Schrödinger operators. II. The random displacement model. Helv. Phys. Acta 66, 810–841 (1993)

    MathSciNet  MATH  Google Scholar 

  21. Klopp, F., Ghribi, F.: Localization for the random displacement model at weak disorder. Ann. Henri Poincaré 11, 127–149 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Klopp, F., Loss, M., Nakamura, S., Stolz, G.: Localization for the random displacement model. Duke Math. J. 161(4), 587–621 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, L.: Anderson-bernoulli localization at large disorder on the 2D lattice. Commun. Math. Phys. 393(1), 151–214 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Li, L., Zhang, L.: Anderson-Bernoulli localization on the three-dimensional lattice and discrete unique continuation principle. Duke Math. J. 171(2), 327–415 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lott, J., Stolz, G.: The spectral minimum for random displacement models. J. Comput. Appl. Math 148, 133–146 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Nichols, R., Stolz, G.: Spectral properties of the discrete random displacement model. J. Spec. Theory 1(2), 123–153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stollmann, P.: Caught by disorder. Progress in Mathematical Physics. Bound states in random media, vol. 20. Birkhäuser Boston Inc., Boston, MA (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Chulaevsky.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Estimates of Characteristic Functions of Sums of Weakly Dependent Random Variables

Appendix A: Estimates of Characteristic Functions of Sums of Weakly Dependent Random Variables

Lemma 7

(Cf. [10, Proposition 4.1]) Assume that random variables \({\text {X}}_k({\omega }) = {\text {Y}}_k({\omega }) + {\text {y}}_k({\omega }) = a_k\left( \xi _k + {\text {y}}_k({\omega })\right) \), \(1\le k \le n\) satisfy the following conditions:

  1. (1)

    The family \({\left\{ \,\xi _k\,, \; k\in \llbracket 1, n \rrbracket \,\right\} }\) is independent, and for all \(k\in \llbracket 1,n \rrbracket \) one has \(\Vert \xi _k\Vert _{\infty }\le 1\), \(\mathbb {E}\left[ \, \xi _k\, \right] = 0\), \(\mathbb {E}\left[ \, \xi _k^2\, \right] \ge c >0.{I^{I^I}}\)

  2. (2)

    \(\max \limits _{1 \le k \le n} \Vert {\text {y}}_k\Vert _{\infty } \le n^{-\gamma } \) for some \(\gamma >1\).

Denote \(\sigma _k^2 = \mathbb {E}\left[ \, {\text {Y}}_k^2\, \right] \), \(S_n({\omega }) = \sum _{k=1}^n {\text {X}}_k({\omega })\), and let \(\Psi _n(t) = \mathbb {E}\left[ \, \text {e}^{ \text {i}t S_n({\omega })}\, \right] \), \(t\in \mathbb {R}\). There exists \(C_*>0\) such that, for any \(\theta \in (0, \, \frac{1}{2})\), one has:

$$\begin{aligned} {{\,\mathrm{\forall }\,}}t \in \left[ c_* T^*_\theta , T^*_\theta \right] \quad |\Psi _n(t)| \le C \, \text {e}^{- \left( 1 + \text {o}\left( 1\right) \right) \frac{t^2}{2}\sum _{k=1}^n \sigma _k^2} \,, \quad T^*_\theta := C_* a n^{-\theta }. \end{aligned}$$
(A.1)

Furthermore, for any \(c_*\in (0,1)\) and \(c_* T^*_\theta \le |t| \le T^*_\theta \), it holds that

$$\begin{aligned} |\Psi _n(t)| \le C \, \text {e}^{ - |t|^{\kappa } }\,, \quad \kappa = \frac{ \beta (1 - 2\theta ) }{ 1 - \theta \beta } >0 \,. \end{aligned}$$
(A.2)

The next result is a well-known smoothing lemma (cf. [4, 12, 16, 17]).

Lemma 8

Let \(\mu \) be a probability measure on \(\mathbb {R}\) with Fourier transform \(\hat{\mu }\). Then for any interval \(I_\epsilon \subset \mathbb {R}\) of length \(\epsilon >0\), one has

$$\begin{aligned} \mu ( I_\epsilon ) \le \frac{8}{\pi } \int _{|t| \le \epsilon ^{-1} } | \hat{\mu }(t)| \, dt \,. \end{aligned}$$
(A.3)

Proof

For any \(T>0\), the function \(g_{T}: t \mapsto \left( 1 - T^{-1}|t| \right) {{\,\mathrm{{{\textbf {1}}}}\,}}_{[-T,T]}(t)\) is the Fourier transform of the probability measure with density \( p_{T}(x) = T \, \frac{1 - \cos (T x)}{\pi (T x)^2} \) (cf., e.g., [9, Section XVI.3]). Further, for any \(B>0\) and \(T = \epsilon ^{-1}\), \(p_{\epsilon ^{-1}}(B\epsilon ) = \epsilon ^{-1} \, \frac{1 - \cos B }{\pi B ^2}\) . In particular, one finds by a numerical calculation that for \(B=\pi /3\)

$$\begin{aligned} {{\,\mathrm{\forall }\,}}x\in [-B\epsilon , B\epsilon ] \quad \epsilon p_{\epsilon ^{-1}}(x) \ge \epsilon \cdot \epsilon ^{-1} \, \frac{1 - \cos (\pi /3)}{\pi ^3/9} > \frac{1}{8}. \end{aligned}$$

Since \(\pi /3>1\), we have \({{\,\mathrm{{{\textbf {1}}}}\,}}_{[-\epsilon , \epsilon ]}(x) \le {{\,\mathrm{{{\textbf {1}}}}\,}}_{[-B\epsilon , B \epsilon ]}(x) \le 8 \epsilon p_{\epsilon ^{-1}}(x)\), and so the claim follows by Parseval’ identity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chulaevsky, V. Anderson Localization in Discrete Random Displacements Models. J Stat Phys 190, 5 (2023). https://doi.org/10.1007/s10955-022-03020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-022-03020-3

Keywords

Mathematics Subject Classification

Navigation