Skip to main content
Log in

Phase Transitions in the Blume–Capel Model with Trimodal and Gaussian Random Fields

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the effect of different symmetric random field distributions: trimodal and Gaussian on the phase diagram of the infinite range Blume–Capel model. For the trimodal random field, the model has a very rich phase diagram. We find three new ordered phases, multicritical points like tricritical point (TCP), bicritical end point (BEP), critical end point (CEP) along with some multi-phase coexistence points. We also find re-entrance at low temperatures for some values of the parameters. On the other hand for the Gaussian distribution the phase diagram consists of a continuous line of transition followed by a first order transition line, meeting at a TCP. The TCP vanishes for higher strength of the random field. In contrast to the trimodal case, in Gaussian case no new phase emerges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Fishman, S., Aharony, A.: Random field effects in disordered anisotropic antiferromagnets. J. Phys. C. 12, L729 (1979). https://doi.org/10.1088/0022-3719/12/18/006

    Article  ADS  Google Scholar 

  2. Cardy, J.L.: Random-field effects in site-disordered Ising antiferromagnets. Phys. Rev. B 29, 505 (1984). https://doi.org/10.1103/PhysRevB.29.505

    Article  ADS  Google Scholar 

  3. Wong, Po.-zen, vonMolnar, S., Dimon, P.: Random-field effects in \(Fe_{1-x} Mg_x Cl_2\). J. Appl. Phys. 53, 7954 (1982). https://doi.org/10.1063/1.330240

    Article  ADS  Google Scholar 

  4. Blossey, R., Kinoshita, T., Dupont-Roc, J.: Random-field Ising model for the hysteresis of the prewetting transition on a disordered substrate. Physica A 248, 247 (1998). https://doi.org/10.1016/S0378-4371(97)00524-4

    Article  ADS  Google Scholar 

  5. Vink, R.L.C., Binder, K., Löwen, H.: Critical behavior of colloid-polymer mixtures in random porous media. Phys. Rev. Lett. 97, 230603 (2006). https://doi.org/10.1103/PhysRevLett.97.230603

  6. Forgacs, G., Lipowsky, R., Nieuwenhuizen, Th.M.: Phase Transitions and Critical Phenomena, vol. 14, p. 136. Academic Press, London (1991)

    Google Scholar 

  7. Maher, J.V., Goldburg, W.I., Pohl, D.W., Lanz, M.: Critical behavior in gels saturated with binary liquid mixtures. Phys. Rev. Lett. 53, 60 (1984). https://doi.org/10.1103/PhysRevLett.53.60

    Article  ADS  Google Scholar 

  8. Sinha, S.K., Huang, J., Satija, S.K.: Scaling Phenomena in Disordered Systems, pp. 157–162. Springer, Boston (1991). https://doi.org/10.1007/978-1-4757-1402-9_12

    Book  Google Scholar 

  9. Michard, Q., Bouchaud, J.-P.: Theory of collective opinion shifts: from smooth trends to abrupt swings. Euro. Phys. J. B 47, 151 (2005). https://doi.org/10.1140/epjb/e2005-00307-0

  10. Shadaydeh, M., Guanche, Y., Denzler, J.: Classification of spatiotemporal marine climate patterns using wavelet coherence and markov random field, Fall meeting 2018IN31C-0824. American Geophysical Union (2018)

  11. Wang, H., Wellmann, F., Verweij, E., von Hebel, C., van der Kruk, J.: Identification and simulation of subsurface soil patterns using hidden Markov random fields and remote sensing and geophysical emi data sets. EGUGA, Vienna, p. 6530 (2017)

  12. Ziatdinov, M., Maksov, A., Kalinin, S.V.: Learning surface molecular structures via machine vision. NPJ Comput. Mater. 3, 31 (2017). https://doi.org/10.1038/s41524-017-0038-7

    Article  ADS  Google Scholar 

  13. Zanjani, F.G., Zinger, S., de With, P.H.N.: Cancer detection in histopathology whole-slide images using conditional random fields on deep embedded spaces. In: Proceeding SPIE 10581, Medical Imaging 2018: Digital Pathology 105810I. (2018). https://doi.org/10.1117/12.2293107

  14. Fu, H., Hu, Y., Lin, S., Kee Wong, D.W., Liu, J.: Deepvessel: retinal vessel segmentation via deep learning and conditional random field. In: International conference on medical image computing and computer-assisted intervention. Springer, New York (2016). https://doi.org/10.1007/978-3-319-46723-8_16

  15. François, O., Ancelet, S., Guillot, G.: Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics 174, 805–816 (2006). https://doi.org/10.1534/genetics.106.059923

    Article  Google Scholar 

  16. Jia, J., Wang, B., Zhang, L., Gong, N.Z.: AttriInfer: inferring user attributes in online social networks using markov random fields. In: Proceedings of the 26th International Conference on World Wide Web, pp. 1561–1569 (2017). https://doi.org/10.1145/3038912.3052695

  17. Hernández-Lemus, E.: Random fields in physics, biology and data science. Front. Phys. (2021). https://doi.org/10.3389/fphy.2021.641859

    Article  Google Scholar 

  18. Aharony, A.: Tricritical points in systems with random fields. Phys. Rev. B 18, 3318 (1978). https://doi.org/10.1103/PhysRevB.18.3318

    Article  ADS  Google Scholar 

  19. Schneider, T., Pytte, E.: Random-field instability of the ferromagnetic state. Phys. Rev. B 15, 1519 (1977). https://doi.org/10.1103/PhysRevB.15.1519

    Article  ADS  Google Scholar 

  20. Galam, S., Birman, J.L.: Random-field distributions and tricritical points. Phys. Rev. B 28, 5322 (1983). https://doi.org/10.1103/PhysRevB.28.5322

    Article  ADS  Google Scholar 

  21. Andelman, D.: First- and second-order phase transitions with random fields at low temperatures. Phys. Rev. B 27, 3079 (1983). https://doi.org/10.1103/PhysRevB.27.3079

    Article  ADS  Google Scholar 

  22. Fytas, N.G., Malakis, M., Eftaxias, K.: First-order transition features of the 3D bimodal random-field Ising model. J. Stat. Mech. Theory Exp. 2008, P03015 (2008). https://doi.org/10.1088/1742-5468/2008/03/P03015

  23. Fytas, N.G., Martín-Mayor, V.: Universality in the three-dimensional random-field Ising model. Phys. Rev. Lett. 110, 227201 (2013). https://doi.org/10.1103/PhysRevLett.110.227201

  24. Mattis, D.C.: Tricritical point in random-field Ising model. Phys. Rev. Lett. 55, 3009 (1985). https://doi.org/10.1103/PhysRevLett.55.3009

    Article  ADS  Google Scholar 

  25. Kaufman, M., Klunzinger, P.E., Khurana, A.: Multicritical points in an Ising random-field model. Phys. Rev. B 34, 4766 (1986). https://doi.org/10.1103/PhysRevB.34.4766

    Article  ADS  Google Scholar 

  26. Saxena, V.K.: Trimodal random-field Ising model on a Bethe lattice and the tricritical point. Phys. Rev. B 35, 2055 (1987). https://doi.org/10.1103/PhysRevB.35.2055

    Article  ADS  Google Scholar 

  27. Sebastianes, R.M., Saxena, V.K.: Phase diagram of the random-field Ising model with a trimodal distribution. Phys. Rev. B 35, 2058 (1987). https://doi.org/10.1103/PhysRevB.35.2058

    Article  ADS  Google Scholar 

  28. Fytas, N.G., Theodorakis, P.E., Georgiou, I.: Universality aspects of the trimodal random-field Ising model. Eur. Phys. J. B. 85, 349 (2012). https://doi.org/10.1140/epjb/e2012-30731-8

    Article  ADS  Google Scholar 

  29. Crokidakis, N., Nobre, F.D.: Destruction of first-order phase transition in a random-field Ising model. J. Phys. Condens. Matter 20, 145211 (2008). https://doi.org/10.1088/0953-8984/20/14/145211

  30. Salmon, O.R., Crokidakis, N., Nobre, F.D.: Multicritical behavior in a random-field Ising model under a continuous-field probability distribution. J. Phys. Condens. Matter 21, 056005 (2009). https://doi.org/10.1088/0953-8984/21/5/056005

  31. Hadjiagapiou, I.A.: The random field Ising model with an asymmetric trimodal probability distribution. Physica A 390, 2229 (2011). https://doi.org/10.1016/j.physa.2011.02.029

    Article  ADS  Google Scholar 

  32. Hadjiagapiou, I.A.: The random-field Ising model with asymmetric bimodal probability distribution. Physica A 389, 3945 (2010). https://doi.org/10.1016/j.physa.2010.05.033

    Article  ADS  Google Scholar 

  33. Wilding, N.B., Nielaba, P.: Tricritical universality in a two-dimensional spin fluid. Phys. Rev. E 53, 926 (1996). https://doi.org/10.1103/PhysRevE.53.926

    Article  ADS  Google Scholar 

  34. Blume, M., Emery, V.J., Griffiths, R.B.: Ising model for the \(\lambda \) transition and phase separation in \(He^3-He^4\) mixtures. Phys. Rev. A 4, 1071 (1971). https://doi.org/10.1103/PhysRevA.4.1071

    Article  ADS  Google Scholar 

  35. Aharony, A.: Critical phenomena. In: Hahne, F.J.W. (ed.) Lecture Notes in Physics, vol. 186, p. 210. Springer, Berlin (1983). https://doi.org/10.1007/3-540-12675-9_13

    Chapter  Google Scholar 

  36. Harbus, F., Stanley, H.E.: Ising-model “metamagnet’’ and tricritical susceptibility exponent. Phys. Rev. Lett. 29, 58 (1972). https://doi.org/10.1103/PhysRevLett.29.58

    Article  ADS  Google Scholar 

  37. Lawrie, I.D., Serbach, S.: Phase Transitions and Critical Phenomena, vol. 9. Academic Press, Cambridge (1984)

    Google Scholar 

  38. Schupper, N., Shnerb, N.M.: Spin model for inverse melting and inverse glass transition. Phys. Rev. Lett. 93, 037202 (2004). https://doi.org/10.1103/PhysRevLett.93.037202

  39. Crisanti, A., Leuzzi, L.: Stable solution of the simplest spin model for inverse freezing. Phys. Rev. Lett. 95, 087201 (2005). https://doi.org/10.1103/PhysRevLett.95.087201

  40. Blume, M.: Theory of the first-order magnetic phase change in \(UO_2\). Phys. Rev. 141, 517 (1966). https://doi.org/10.1103/PhysRev.141.517

    Article  ADS  Google Scholar 

  41. Capel, H.W.: On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting. Physica 32, 966 (1966). https://doi.org/10.1016/0031-8914(66)90027-9

    Article  ADS  Google Scholar 

  42. Kaufman, M., Kanner, M.: Random-field Blume–Capel model: mean-field theory. Phys. Rev. B 42, 2378 (1990). https://doi.org/10.1103/PhysRevB.42.2378

    Article  ADS  Google Scholar 

  43. Santos, P.V., da Costa, F.A., de Araújo, J.M.: The random field Blume–Capel model revisited. J. Magn. Magn. Mater. 451, 737 (2018). https://doi.org/10.1016/j.jmmm.2017.12.008

    Article  ADS  Google Scholar 

  44. Albayrak, E.: The random field Blume–Capel model on the Bethe lattice. Chin. J. Phys. 68, 100 (2020). https://doi.org/10.1016/j.cjph.2020.09.016

    Article  MathSciNet  Google Scholar 

  45. Akinci, Ü.: On the spin-S random field Ising model. J. Magn. Magn. Mater. 488, 165368 (2019). https://doi.org/10.1016/j.jmmm.2019.165368

  46. Erichsen, R., Jr., Lopes, A.A., Magalhaes, S.G.: Multicritical points and topology-induced inverse transition in the random-field Blume–Capel model in a random network. Phys. Rev. E 95, 062113 (2017). https://doi.org/10.1103/PhysRevE.95.062113

  47. Albayrak, E.: Trimodal-random field Blume–Capel model. Mod. Phys. Lett. B 35(16), 2150270 (2021). https://doi.org/10.1142/S0217984921502705

    Article  ADS  MathSciNet  Google Scholar 

  48. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer, New York (1998)

    Book  Google Scholar 

  49. Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478, 1 (2009). https://doi.org/10.1016/j.physrep.2009.05.002

    Article  ADS  MathSciNet  Google Scholar 

  50. Sumedha, Singh, S.K.: Effect of random field disorder on the first order transition in p-spin interaction model. Physica A 442, 276–283 (2016). https://doi.org/10.1016/j.physa.2015.09.032

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Sumedha, Barma, M.: Solution of the random field XY magnet on a fully connected graph. J. Phys. A 55, 9 (2022). https://doi.org/10.1088/1751-8121/ac4b8b

    Article  MathSciNet  Google Scholar 

  52. Sumedha, Mukherjee, S.: Emergence of a bicritical end point in the random-crystal-field Blume–Capel model. Phys. Rev. E 101, 042125 (2020). https://doi.org/10.1103/PhysRevE.101.042125

    Article  ADS  MathSciNet  Google Scholar 

  53. Fytas, N.G., Martín-Mayor, V.: Efficient numerical methods for the random-field Ising model: Finite-size scaling, reweighting extrapolation, and computation of response functions. Phys. Rev. E 93, 063308 (2016). https://doi.org/10.1103/PhysRevE.93.063308

  54. Ahmad, S., Rijal, K., Das, D.: First passage in the presence of stochastic resetting and a potential barrier. (2022). arXiv: 2202.03766

  55. Carneiro, C.E.I., Henriques, V.B., Salinas, S.R.: Mean-field phase diagram of the spin-1 Ising ferromagnet in a Gaussian random crystal field. J. Phys. A 23, 3383 (1990). https://doi.org/10.1088/0305-4470/23/14/033

    Article  ADS  Google Scholar 

  56. Branco, N.S.: Blume–Emery–Griffiths model in a random crystal field. Phys. Rev. B 60, 1033 (1999). https://doi.org/10.1103/PhysRevB.60.1033

    Article  ADS  Google Scholar 

  57. den Hollander, F.: Large deviations. Fields Inst. Monogr. 14, 2472–4173 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheli Mukherjee.

Additional information

Communicated by Francesco Zamponi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 Rate Function for the RFBC

The probability of a spin configuration \(C_N\) with magnetization \(x_1 = \frac{\sum \limits _i s_i}{N}\) and quadrupole moment \(x_2 = \frac{\sum \limits _i s_i^2}{N}\) is proportional to \( e^{- \beta {\mathcal {H}}}\), where \({\mathcal {H}}\) is the Hamiltonian given in Eq. 2. This via large deviation principle (LDP) in the limit of \(N \rightarrow \infty \) goes as \(P(C_N) \sim e^{- N I(x_1, x_2)}\). The function \(I(x_1, x_2)\) here is the rate function which is like the generalized free energy functional. To calculate \(I(x_1, x_2)\) we use two steps :

  1. 1.

    Calculate the rate function \(R(x_1, x_2)\) corresponding to the probability \(P_{{\mathcal {H}}_{ni}} (C_N) \sim e^{- N R(x_1, x_2)}\). Here \({\mathcal {H}}_{ni}\) is the non-interacting part of the Hamiltonian i.e \({\mathcal {H}}_{ni} = \Delta \sum _i s_i ^2 - \sum _i (h_i+H) s_i\). The function \(R(x_1, x_2)\) is calculated using the Gärtner–Ellis (GE) theorem [49]. GE theorem states that \(R(x_1, x_2)\) is given by the Legendre–Fenchel transformation of the scaled cumulant generating function \(\uplambda (k_1, k_2)\), provided \(\uplambda (k_1, k_2)\) is differentiable. The expression of \(R(x_1, x_2)\) is

    $$\begin{aligned} R(x_1,x_2)= & {} \sup _{k_1,k_2} \Bigg [x_1k_1+x_2k_2 - \uplambda (k_1, k_2) \Bigg ] \nonumber \\ \end{aligned}$$
    (25)

    The function \(\uplambda (k_1, k_2) = \lim \limits _{N \rightarrow \infty } \frac{1}{N} \uplambda _N(k_1, k_2)\) where \(\uplambda _N (k_1, k_2)\) is the logarithmic cumulant generating function of \(x_1\) and \(x_2\) w.r.t the probability \(P_{{\mathcal {H}}_{ni}}\). The \(\uplambda (k_1, k_2)\) for the random variables \(x_1\) and \(x_2\) is given by

    $$\begin{aligned} \uplambda (k_1, k_2) = \Bigg < \log (1+2 e^{k_2-\beta \bigtriangleup } \cosh (k_1+ \beta H+ \beta h_i))\Bigg >_h \nonumber \\ \end{aligned}$$
    (26)

    \(\langle \rangle _h\) represents the average over the random field distribution. Minimization of the expression \(x_1k_1+x_2k_2 - \uplambda (k_1, k_2)\) in Eq. 25 w.r.t \(k_1\) and \(k_2\) gives the following equations for the supremum (\(k_1^*\), \(k_2^*\)) as a function of \(x_1\) and \(x_2\)

    $$\begin{aligned} x_1= & {} \Bigg < \frac{ 2 e^{k_2^* -\beta \Delta } \sinh (\beta h_i+ \beta H +k_1^*)}{1+ 2 e^{k_2^* -\beta \Delta } \cosh (\beta h_i+ \beta H + k_1^*)}\Bigg >_h \end{aligned}$$
    (27)
    $$\begin{aligned} x_2= & {} \Bigg < \frac{2 e^{k_2^* -\beta \Delta } \cosh (\beta h_i+ \beta H +k_1^*)}{1+ 2 e^{k_2^* -\beta \Delta } \cosh (\beta h_i+ \beta H + k_1^*)}\Bigg >_h \end{aligned}$$
    (28)
  2. 2.

    The full rate function of the interacting Hamiltonian can be calculated via tilted LDP [57]. This principle allow us to calculate the rate function \(I(x_1, x_2)\) from the old rate function (\(R(x_1, x_2)\)) using a change in measure by integrating against an exponential of a continuous function \(G(x_1, x_2)\) which in our case is the interacting part of the Hamiltonian, \( G = \frac{\beta x_1^2}{2}\). The rate function \(I(x_1, x_2)\) is given by (see [50, 51] for more details)

    $$\begin{aligned} I(x_1, x_2) = R(x_1, x_2) - \frac{\beta x_1^2}{2} - \inf \limits _{y_1, y_2} \Big (R(y_1, y_2) - \frac{\beta y_1^2}{2} \Big ) \end{aligned}$$
    (29)

    After substituting \(R(x_1, x_2)\) we get

    $$\begin{aligned} I(x_1, x_2)= & {} x_1 k_1^* + x_2 k_2^* - \frac{\beta x_1^2}{2} - \,\, \Bigg < \log (1+2 e^{k_2^*-\beta \bigtriangleup } \cosh (k_1^*+ \beta H+ \beta h_i))\Bigg >_h\nonumber \\ \end{aligned}$$
    (30)

    here (\(k_1^*, \,\, k_2^*\)) are given by the solutions of Eqs. 27 and 28. Minimizing the full rate-function w.r.t the order parameters (\(x_1\), \(x_2\)) we get \(k_1^*= \beta m\) and \(k_2^*=0\). The variables m and q represent the minimum of \(x_1\) and \(x_2\) respectively. On substituting \(k_1^*\) and \(k_2^*\) in Eq. 30 we get the free energy functional to be

    $$\begin{aligned} f(m) = \frac{\beta m^2}{2}- \,\, \Bigg < \log (1+2 e^{-\beta \bigtriangleup } \cosh { \beta (m + H + h_i)} \,\, )\Bigg >_h \end{aligned}$$
    (31)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Sumedha Phase Transitions in the Blume–Capel Model with Trimodal and Gaussian Random Fields. J Stat Phys 188, 22 (2022). https://doi.org/10.1007/s10955-022-02949-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-022-02949-9

Keywords

Navigation